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In this study artificial neural network (ANN) models were developed for 
predicting the effects of wood species, density, modifying time, and 
temperature on the equilibrium moisture content (EMC) and swelling of six 
different thermally modified hardwood species, as previously published by 
the authors. Lumber of Yellow-poplar (Liriodendron tulipifera), red oak 
(Quercus borealis), white ash (Fraxinus americana), red maple (Acer 
rubrum), hickory (Carya glabra), and black cherry (Prunus serotina) were 
selected. Treatment type, species, temperature, time, and density were 
used as inputs for the models. Using Keras and Pytorch libraries in Python, 
different feed forward and back propagation multilayer ANN models were 
created and tested. The best prediction models, determined based on the 
errors in training iterations, were selected and used for testing. Based on 
the performance analysis, the prediction ANN models were accurate, 
reliable, and effective tools in terms of time and cost-effectiveness, for 
predicting the EMC and swelling characteristics of thermally modified 
wood. The multiple-input model was more accurate than the single-input 
model and it provided a prediction with R2 of 0.9975, 0.92, and MAPE of 
1.36, 7.77 for EMC and swelling. 
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INTRODUCTION 
 

The utilization of thermally modified woods (TMW) has gained significant traction 

as a sustainable material across diverse applications (Espinoza et al. 2015; Bond et al. 

2023). Thermal modification (TM), a process involving the controlled heating of wood 

within the temperature range of 180 to 240 °C, changes its chemical, physical, and 

mechanical properties (Tjeerdsma and Militz 2005; Esteves and Pereira 2009; Militz and 

Altgen 2014; Hill et al. 2021). The primary objective of TM is to enhance the dimensional 

stability of wood, rendering it well-suited for applications in varying moisture conditions, 

particularly in outdoor applications. The TMW exhibits altered equilibrium moisture 

content (EMC) and swelling compared to unmodified wood (Masoumi and Bond 2024a). 
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Notably, hardwoods exhibit distinct chemical and anatomical properties that differ 

from softwoods and across different plantations (Oladi et al. 2013). The Appalachian 

region in North America stands out as a hub for several hardwood species, with yellow 

poplar (YP) emerging as a prominent species, representing 35% of the region's growth and 

production (Appalachian Hardwood Species Guide 2023).  

Artificial Neural Network (ANN) models are pivotal for deciphering complex 

scenarios and revealing hidden relationships between input and output variables. This 

transformative technology, mirroring the human brain’s learning process, excels in pattern 

recognition, classification, and prediction tasks across various domains such as finance, 

healthcare, and image recognition (Sen et al. 2023). 

The analysis of ANNs encompasses two key facets: architecture and mathematical 

functions. The architecture involves the arrangement and interconnections of layers and 

nodes, highlighting the network’s information processing capacity. Simultaneously, 

mathematical functions, embedded in activation functions and weight adjustments, 

contribute to the network’s adaptability and learning ability, which is crucial for its 

predictive prowess. Multilayer Perceptron (MLP) ANN models, particularly notable for 

their predictive capabilities, have been extensively researched and applied in diverse fields. 

Their proficiency in discerning complex patterns within data sets makes them adept at 

handling intricate relationships and non-linear dependencies, surpassing traditional 

analytical approaches (Sen et al. 2023). The novel deep learning principles have given rise 

to deep neural networks, capable of handling vast amounts of data and extracting 

hierarchical features. This dynamic landscape ensures that ANN models remain at the 

forefront of cutting-edge technological solutions, empowering to explore new frontiers in 

data analysis and decision-making.  

Recent studies have reported the possibility of predicting EMC, swelling, and 

shrinkage of wood based on factors such as wood species, treatment time, and treatment 

temperature (Tiryaki et al. 2016; Chen et al. 2022).  Chen et al. (2022) reported predicting 

the EMC and Specific gravity using a back-propagation Neural Network. Additionally, 

Nasir et al. (2019) reported the possibility of predicting the swelling coefficient and water 

absorption with the group method of data handling (GMDH) neural network. These studies 

have used single or few species in making models. However, a model containing a variety 

of species, particularly hardwoods that have very diverse properties, is lacking in the 

literature. 

This study aimed to develop a single-input (as a more time and cost-effective 

model) and multiple-input model specifically tailored to predict EMC and swelling in 

thermally modified hardwood timber of six different types with different densities and 

anatomy. These species, native to the Appalachian region in North America, have recently 

gained attention for their potential use in structural applications. In the authors’ previous 

studies, their physical properties were published. Using key features, such as wood species, 

density, treatment time, and treatment temperature, the authors sought to contribute to the 

ongoing exploration of ANN applications in predicting the intricate properties of TMW, 

thereby enhancing the understanding and utilization of this sustainable material in diverse 

applications. The model was trained and tested using key features of the given Appalachian 

species. It is designed to take the features of new species and predict their EMC and 

swelling properties. The application of these models would be to optimize the process to 

reach the optimal properties of the process and products (Masoumi and Bond 2024b). 
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EXPERIMENTAL 
 

Data Collection 
The data used in this study was previously published by Masoumi and Bond 

(2024a) and Masoumi et al. (2024). Test specimens were prepared from randomly selected 

lumber. The lumber was kiln-dried to 6 to 8% MC prior to modification. Thermal 

modification of the lumber was conducted in an industrial dry-open vessel thermo-vacuum 

and the maximum modification temperature, duration, and density of the unmodified and 

modified lumber is presented in Table 1. Cubes of each treatment type of every species 

with dimensions of 1 in × 1 in × 1 in (L × R × T) were cut from the lumber. Physical 

experiments were conducted based on the ASTM D143-22 (2022) standard. Thirty cubes 

of each species were taken and conditioned by placing them in a climatic chamber in 21 

°C and 65% relative humidity (RH), which is equal to 12% RH for 20 days until unmodified 

specimens reached the equilibrium moisture content, as measurements five days after this 

time showed no moisture absorption. 

After conditioning, the samples were weighed, and their dimensions were measured 

using a 0.01-g accuracy balance and a 0.01-mm accuracy digital caliper. Samples were 

then submerged in distilled water for 20 days. Subsequently, samples were left to dry at 

room temperature for 3 days to avoid cracking and then placed in the oven at a temperature 

of 103 ± 2 °C for 24 h. After each phase, the weight and dimensions of the samples were 

measured. 

 
Table 1. Modification Temperature, Time, and Density for Different Wood 
Species 

 

Artificial Neural Network Models 
The authors utilized a dataset comprising 360 data points representing EMC and 

volumetric swelling of six hardwood species to predict EMC and swelling using a single 

input and multiple input Multilayer Perceptron (MLP) fully connected Artificial Neural 

Network implemented in Python 3.11, leveraging Keras and PyTorch. The single input 

model used one of the parameters as input in every processing set, and multiple input used 

all of the parameters in a model. In either case, either EMC or Swelling was considered as 

the output. Keras and PyTorch are two powerful open-source machine-learning libraries. 

Keras is python-based and is used in deep learning for neural networks. PyTorch is an 

open-source machine learning library that can be integrated with Python and can debug 

neural networks easily. The mathematical formula for MLP is given in Eq. 4. 

 

Model architecture 

The ANN model consisted of an input layer representing modified and unmodified, 

wood species, temperature, time, and density, and an output layer of EMC or swelling. The 

Wood Species YP 
Red 
Oak 

Ash 
Red 

Maple 
Hickory Black Cherry 

Temperature (°C) A B C C C D 

Time (min) A C C C C B 

Unmodified Density (g/cm2) 0.44 0.74 0.74 0.61 0.77 0.56 

Modified Density (g/cm2) 0.37 0.46 0.32 0.45 0.59 0.46 

As the modification schedule is proprietary, A,B,C,D represent the class of time and 
temperature 
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architecture involved an input layer, a hidden layer with ReLU activation (Rectified linear 

activation function that is the default function that will output the input directly, if it is 

positive, otherwise prints zero in output), and an output layer. The hidden layer is the layer 

of neurons that is neither the input nor the output layer and is what makes neural networks 

deep and enables them to learn complex data. The activation function is used to determine 

the output of a neuron by calculating the weighted sum of inputs and adds a bias to it. The 

model, implemented using the Keras and PyTorch deep learning libraries, adapted its input 

size based on the number of features extracted from the dataset. Various configurations 

were experimented with, including different architectures (single or multiple inputs, 

varying hidden layer neurons), optimizers (Adam and SGD), learning rates, epochs, and 

regularizations (L1, L2, and dropout). The models were assessed based on mean squared 

error (MSE), MAPE, and R2 values, which are the best criteria for measuring the 

performance of ANNs (Sen et al. 2023). The ideal model has data with the lowest MSE, 

MAPE < 10 and R2 above 0.90 and as close as to 1. Ultimately, the best model was chosen 

for prediction. 

 

 

  
 

 

 
 
Fig. 1. Schematic architecture of A: basic single input; B: Basic multiple input; and C: Multiple input 
ANN model used in this study 
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Equations 
 

MSE =  
1

𝑛
∑ (yi − yp)

2𝑛
𝑖=1  

 
                  (1) 

R2 =  1 −
∑ (yi−yp)

2𝑛
𝑖=1

∑ (yi−ȳ)2𝑛
𝑖=1

 

 

                   (2) 

MAPE = 
1

 𝑛
∑ (

|yi−yp|

yi
) 100𝑛

𝑖=1  

 
(3) 

Y = g(𝜃 + ∑ 𝑣j

𝑚

𝑗=1
[∑ 𝑓(𝑊𝑖𝑗xi + 𝛽𝑗)

𝑛

𝑖=1
]) 

 

(4) 

 

In these equations, Y is the prediction of the dependent variable; g () represents the 

activation functions of output neurons; θ is the bias value of output neuron; vj is the weight 

of the connection between the jth hidden and output neuron; f is the activation functions of 

hidden neurons; Wij is the weight of connection between the ith input neuron and jth hidden 

neuron; Xi is the input value of ith independent variable; and βj is the bias value of the jth 

hidden neuron.  

 

Training and testing 

The dataset was split into training and testing sets (80% for training, 20% for 

testing) using the train_test_split function. The neural network model was trained using 

mean squared error loss as the loss function and the Adam and SGD, which are the most 

common optimizers. The training process involved iterating through 1000 epochs 

(iteration) and updating the model’s parameters to minimize the training loss, which shows 

how well the model is fitting the training data. Subsequently, the model was validated using 

the test set to evaluate its ability to predict. Test loss or mean squared error (MSE), R2, and 

the Mean Absolute Percentage Error (MAPE) were used for evaluation and their 

mathematical expression are presented in Eqs. 1 to 3. Test Loss or mean square error (MSE) 

indicates how well the model applies new data. A lower MSE suggests better accuracy. 

The R2 score represents the proportion of variance in the dependent variable explained by 

the independent variables. A higher R2 score (closer to 1) indicates better predictive 

performance. MAPE provides a measure of how far the predicted values are from the actual 

values as a percentage and should be defined and calculated before printing the data in the 

coding. In the training process the learning rate was set to lr = 0.0001 to 0.001 and 0.005, 

for fine-tuning model parameters for optimal performance. 

 

 

RESULTS AND DISCUSSION 
 

Model Performance Analysis 
The data for performance analysis, such as R2, MSE, and MAPE, values of the 

EMC and swelling parameters, shown in Table 2, indicate that the ANN models were 

successful. Masoumi and Bond 2024b compared ANN with random forest and gradient 

boosting regression models and demonstrated that ANN models are more accurate than 
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traditional regression models. Both PyTorch and Keras performed similar accuracy in 

terms of R2, MSE, and MAPE in both single and multiple-input ANN models. The PyTorch 

has better flexibility and debugging capabilities to check and ensure the validity of Keras. 

The models implemented by both Keras and PyTorch provided similar results. The single 

input model was acceptable just in features of treatment and time (R2 > 0.90 or MAPE < 

10) for EMC. However, for swelling, the single input model did not provide as good 

performance as all R2 values were smaller than 0.90, and MAPE values were higher than 

10. Swelling in wood, especially in TMW is affected by multiple features, such as wood 

species, anatomy, and density, that are unique to each species, modifying time and 

temperature that changes the physical properties to different extents by changing the 

chemical and structural properties differently in different species. In the multiple-input 

model, R2 values were higher than 0.90 and MAPE values were smaller than 10% in 

predicted data for both EMC and swelling in TM hardwoods by having the R2 and MAPE 

values of 0.9975, 0.92, and MAPE values of 1.36, 7.77 for EMC and swelling, respectively. 

Particularly, having R2 value of 0.997 in EMC and MAPE of 1.36 shows very high 

accuracy of the performance in multiple input models in predicting EMC. An R2 value over 

0.90 indicates an excellent correlation between the calculated and predicted data. 

Moreover, MAPE is a decisive factor for evaluating for prediction performance (Aydin 

et al. 2015) and 10% is considered a highly accurate prediction. 

 

Table 2. Data for Performance Analysis of Single and Multiple input ANN 

Single  Criteria 
Input 

Output 
Treatment Species Temperature Time Density 

Input 
 

R2 
0.95 

(0.86) 
0.03 
(0.3) 

0.86 
(0.86) 

0.91 
(0.91) 

0.66 
(0.75) 

EMC 

MSE 
0.95 

(0.95) 
6.95 

(6.94) 
0.93 

(0.96) 
0.64 

(0.64) 
2.37 

(1.76) 
EMC 

MAPE 
12.45 

(11.79) 
37.62 

(37.88) 
12.34 

(12.41) 
7.75 

(7.74) 

 
15.32 

(12.60) 
EMC 

R2 
0.2 

(0.20) 
0.54 

(0.54) 
0.20 

(0.20) 
0.2 

(0.2) 
0.70 

(0.71) 
Swelling 

MSE 
21.38 
(21.4) 

12.16 
(12.22) 

21.38 
(21.47) 

21.045 
(21.49) 

7.84 
(7.67) 

Swelling 

MAPE 
36.79 
(37.5) 

34.24 
(34.5) 

37.32 
(37.98) 

38.08 
(38.47) 

17.35 
(17.18) 

Swelling 

Multiple 
input 

R2 
0.9976 

(0.9970) 

All the features 

EMC 

MSE 
0.017 
(0.02) 

EMC 

MAPE 1.36 (1.54) EMC 

R2 0.92 (0.92) 

All the features 

Swelling 

MSE 2.0 (2.1) Swelling 

MAPE 7.77 (8.25) Swelling 

*Keras Data is presented in parentheses 

 

The multiple input model performed an acceptable performance in predicting EMC 

and swelling of wood and the single input model was unable to predict accurately that these 

results were in close accordance with the findings of Haftkhani et al. (2022), where they 
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modeled the water absorption and swelling of TM fir (Abies sp.) wood and reported the 

superiority of the multiple input ANN model with R2 and MAPE of 0.996 and 2.8.  

 

Table 3. Experimental Data and Predicted Results 

Equilibrium Moisture Content  Swelling 

Predicted Actual Error Predicted Actual Error 

7.41 7.4 -0.01  21.25 21.57 0.32 

5.01 5 -0.01  10.49 10 -0.49 

4.19 4.1 -0.09  10.80 9.06 -1.74 

10.74 10.75 0.01  16.01 15.96 -0.05 

4.98 5 0.02  10.61 8.92 -1.69 

4.08 3.8 -0.28  10.29 13.79 3.50 

10.28 10.25 -0.03  17.55 18.84 1.29 

4.96 4.96 0.00  10.73 11.63 0.90 

9.85 9.5 -0.35  13.84 13.55 -0.29 

10.27 10.1 -0.17  12.88 13.57 0.69 

11.65 11.56 -0.09  11.85 12.7 0.85 

6.08 5.9 -0.18  4.43 4.82 0.39 

7.40 7.6 0.20  20.32 23.67 3.35 

6.08 6 -0.08  4.43 4.49 0.06 

4.79 4.7 -0.09  8.22 7.35 -0.87 

10.26 10.2 -0.06  12.53 14.29 1.76 

9.55 9.6 0.05  20.12 20.37 0.25 

10.74 10.7 -0.04  16.01 16.3 0.29 

10.25 10.2 -0.05  13.13 12.88 -0.25 

6.06 6.1 0.04  4.04 3.88 -0.16 

……………………………………………………………………………………………………… 

4.98 5 0.02  10.61 10.91 0.30 

4.19 4.2 0.01  10.80 7 -3.80 

7.41 7.4 -0.01  21.25 16.54 -4.71 

10.25 10.1 -0.15  13.49 13.58 0.09 

10.73 10.75 0.02  16.12 15.67 -0.45 

10.28 10.4 0.12  17.50 17.68 0.18 

11.65 11.75 0.10  11.85 11.62 -0.23 

9.79 10.3 0.51  12.98 13.45 0.47 

10.28 10.3 0.02  17.50 18.43 0.93 

6.08 6.1 0.02  4.43 4.65 0.22 

6.10 6 -0.10  6.99 5.86 -1.13 

11.72 11.76 0.04  11.57 11.51 -0.06 

6.06 6.2 0.14  4.04 4.49 0.45 

9.55 9.6 0.05  20.12 21.47 1.35 

6.08 6 -0.08  4.43 3.74 -0.69 

4.79 4.8 0.01  7.87 7.95 0.08 

9.55 9.5 -0.05  20.08 21.2 1.12 

9.55 9.6 0.05  20.08 19.6 -0.48 
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Ozsahin and Murat (2018) developed an ANN model for predicting EMC in TM fir 

(Abies bornmuelleriana Maff) and hornbeam (Carpinus betulus L.) and reported a MAPE 

value of 3.21. Additionally, in another study for the same species, Chen et al. (2022) 

reported R2 values of 0.99 and 0.98. The multiple-input ANN model was shown to be 

effective and reliable in predicting EMC and swelling. Tiryaki et al. (2016) confirmed 

predicting volumetric swelling by ANN models using wood species, treatment time, and 

temperature. Other studies have reported the effectiveness of ANN could predict TMW 

properties (Nasir et al. 2019). 

 

Fitting effect 

Figure 2 shows the correlation between the experimental data values and the values 

predicted by the developed ANN models. There was a significant correlation between 

actual and predicted values in testing both in EMC and swelling with R2 0.9975 and 0.92. 

The same accuracies have been reported by other researchers such as Chen et al. (2022), 

0.99, for EMC and Chai et al. (2018) 0.974. Figure 3 shows the training test for EMC and 

swelling.  

 

  
 

Fig. 2. Fitting effect of actual vs predicted values in EMC and swelling 

 

 
 

Fig. 3. Loss trend in training test for EMC and swelling 
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During training, the loss was recorded every 100 epochs, it is essential to observe 

the loss trend to ensure that the model is converging as the decreasing trend indicates that 

the model is learning from the data. For EMC, the loss both in training and testing 

immediately dropped to its lowest value after 20 epochs and kept a constant value toward 

the end of iterations. However, for swelling it dropped after 200 epochs as the loss was 

constant in training and testing, and in training the loss was higher than testing because 

EMC data were more uniform and swelling data were very diverse in all the tested 

hardwood species.  

The ANNs have several advantages over traditional statistical tools, including the 

ability to model complex, non-linear relationships and handle high-dimensional data. They 

excel at learning from data, recognizing patterns, and automatically extracting features, 

reducing the need for manual intervention. ANNs are robust against noisy and incomplete 

data, can generalize well to unseen data, and benefit from parallel processing capabilities 

for efficient computation. Their flexibility and versatility make them suitable for a wide 

range of applications, although they require large datasets, computational resources, and 

expertise in design and training. This model is implemented and is designed to take the 

known features of new species and predict their EMC and swelling properties. 

  

 
CONCLUSIONS 
 

1. The PyTorch system was used in this study, as it has better flexibility and 

debugging capabilities to check and ensure the validity of Keras. The models 

implemented by both Keras and PyTorch provided similar results.  

2. The Multiple-input artificial neural network (ANN) model was successful in 

accurately predicting the equilibrium moisture content (EMC) and swelling using 

various input features. The ANN learned EMC data faster than swelling data. 

Hardwoods have different properties that lead to variation in their properties in a 

modification, making it difficult to predict their properties.  

3. The single-input model showed less accuracy in predicting the EMC and swelling 

using just one feature as an input. This implies that multiple features are 

contributing to the EMC and particularly swelling changes. 

4. The accuracy of the prediction of the developed ANN models was shown by the R2 

values of 0.9975 and 0.92 for EMC and swelling, respectively, which especially for 

EMC was higher than previously introduced models and for the swelling agrees 

with models in other studies. 

 
 
ACKNOWLEDGMENTS 
 

The authors are grateful to the Bingaman Lumber company for providing thermally 

modified lumber and information regarding the thermal modifying process. 

 

 

  



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Masoumi & Bond (2024). “ANN prediction of TMW,” BioResources 19(4), 6983-6993.  6992 

REFERENCES CITED 
 

Appalachian Hardwood Manufacturers, Inc. (2023). “Appalachian hardwood species 

guide,” (https://www.appalachianwood.org/species/species.htm), Accessed 25 Nov 

2023. 

ASTM D143-22 (2022). “Standard test methods for small clear specimens of timber,” 

ASTM International, West Conshohocken, PA, USA. DOI: 10.1520/D0143-22. 

Aydin, G., Karakurt, I., and Hamzacebi, C. (2015). “Performance prediction of diamond 

sawblades using artificial neural network and regression analysis,” Arabian Journal 

of Science and Engineering 40(7), 2003-2012. DOI: 10.1007/s13369-015-1589-x 

Bond, B., Gonzalez, J., Masoumi, A., Xavier Zambrano Balma, F., and Tylor, A. (2023). 

“Thermally modified wood as a sustainable alternative,” in: PTF BPI 2023, 

Processing Technologies for the Forest & Biobased Products Industries, Simons 

Islands, GA, USA, pp. 1-15. 

Chai, H., Chen, X., Cai, Y., and Zhao, J. (2018). “Artificial neural network modeling for 

predicting wood moisture content in high frequency vacuum drying process,” 

Forests 10(1), article 16. DOI: 10.3390/f10010016 

Chen, Y., Wang, W., and Li, N. (2022). “Prediction of the equilibrium moisture content 

and specific gravity of thermally modified wood via an Aquila optimization algorithm 

back-propagation neural network model,” BioResources 17(3), 4816-4836. DOI: 

10.15376/biores.17.3.4816-4836 

Espinoza, O., Buehlmann, U., and Laguarda-Mallo, M. F. (2015). “Thermally modified 

wood: Marketing strategies of U.S. producers,” BioResources 10(4), 6942-6952. DOI: 

10.13576/biores.10.4.6942-6952 

Esteves, B. M., and Pereira, H. M. (2009). “Wood modification by heat treatment: A 

review,”  BioResources 4(1), 370-404. DOI: 10.13576/biores.4.1.370-404 

Haftkhani, A. R, Abdoli, F., Rashidijouybari, I., and Garcia, R. A. (2022). “Prediction of 

water absorption and swelling of thermally modified fir wood by artificial neural 

network models,” European Journal of Wood and Wood Products 80, 1135–1150. 

DOI: 10.1007/s00107-022-01839-x 

Hill, C., Altgen, M., and Rautkari, L. (2021). “Thermal modification of wood—A review: 

Chemical changes and hygroscopicity,” Journal of Materials Science 56(11), 6581-

6614. DOI: 10.1007/s10853-020-05722-z 

Masoumi, A., and Bond, B. (2024a). “Dimensional stability and equilibrium moisture 

content of thermally modified hardwoods,” BioResources 19(1), 1218-1228. DOI: 

10.15376/biores.19.1.1218-1228 

Masoumi, A., and Bond, B. (2024b). “Machine learning-based prediction of processing 

time in furniture manufacturing to estimate lead time and pricing,” European Journal 

of Wood and Wood Products (Submitted) 

Masoumi, A., Bond, B., and Zink Sharp, A. (2024). “Kinetics of moisture absorption, 

swelling and shrinkage of thermally modified hardwoods,” Annual International 

Conference of Forest Products Society, June 4-6, 2024, Knoxville, TN. 

DOI: 10.13140/RG.2.2.28417.67687 

Militz, H., and Altgen, M. (2014). “Processes and properties of thermally modified wood 

manufactured in Europe,” ACS Symposium Series 1158, 269-285. DOI: 10.1021/bk-

2014-1158.ch016 

Nasir, V., Nourian, S., Avramidis, S., and Cool, J. (2019). “Prediction of physical and 

mechanical properties of thermally modified wood based on color change evaluated 

https://doi.org/10.1007/s00107-022-01839-x
http://dx.doi.org/10.13140/RG.2.2.28417.67687


 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Masoumi & Bond (2024). “ANN prediction of TMW,” BioResources 19(4), 6983-6993.  6993 

by means of “group method of data handling”(GMDH) neural network,” 

Holzforschung 73(4), 381-392. DOI: 10.1515/hf-2018-0146 

Oladi, R., Matini Behzad, H., Sharifi, Z., and Masoumi, A. (2013). “Comparing the wood 

anatomy of the field elms (Ulmus carpinifolia Borkh.) native to Gorgan and 

Komijan,” Journal of Forest and Wood Products 66(1), 69-81. DOI: 

10.22059/JFWP.2013.35342 

Ozsahin, S., and Murat, M. (2018). “Prediction of equilibrium moisture content and 

specific gravity of heat-treated wood by artificial neural networks,” European 

Journal of Wood and Wood Products 76, 563-572. DOI: 10.1007/s00107-017-1219-2 

Şen, Z. (2023). “Artificial Neural Networks,” in: Shallow and Deep Learning Principles, 

Springer, Cham, Switzerland, pp. 429-574. DOI: 10.1007/978-3-031-29555-3_7 

Tjeerdsma, B. F., and Militz, H. (2005). “Chemical changes in hydrothermal treated 

wood: FTIR analysis of combined hydrothermal and dry heat-treated wood, Holz als 

Roh- und Werkstoff 63, 102-111. DOI: 10.1007/s00107-004-0532-8 

Tiryaki, S., Bardak, S., Aydin, A., and Nemli, G. (2016). “Analysis of volumetric 

swelling and shrinkage of heat-treated woods: Experimental and artificial neural 

network modeling approach,” Maderas Ciencia y Tecnología 18(3), 477-492. DOI: 

10.4067/S0718-221X2016005000043 

 

Article submitted: July 1, 2024; Peer review completed: July 17, 2024; Revised version 

received and accepted: July 18, 2024; Published: August 1, 2024.  

DOI: 10.15376/biores.19.4.6983-6993 

https://doi.org/10.22059/jfwp.2013.35342
https://doi.org/10.1007/s00107-017-1219-2
https://doi.org/10.1007/978-3-031-29555-3_7
https://doi.org/10.1007/s00107-004-0532-8

