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The pyrolysis behavior of biomass is critical for industrial process design, 
yet the complexity of pyrolysis models makes this task challenging. This 
paper introduces an innovative hybrid model to quantify the pyrolysis 
potential of pine needles, predicting the entire process of their pyrolysis 
behavior. Through experimental analyses and kinetic parameter 
calculations of pine needle pyrolysis, the study employs a kinetic model 
with a chemical reaction mechanism. Additionally, it introduces an 
improved dung beetle optimization algorithm to accurately capture the 
primary trends in pine needle pyrolysis. The developed artificial neural 
network model incorporates meta-heuristic algorithms to address process 
error factors. Validation is based on experimental data from TG at three 
different heating rates. The results demonstrate that the hybrid model 
exhibits strong predictive performance compared to the standalone model, 
with coefficients of determination (R²) of 0.9999 and 0.999 for predicting 
the conversion degree and conversion rate of untrained data, respectively. 
Additionally, the standard errors of prediction (SEP) are 0.249% and 0.449% 
for predicting the conversion degree and conversion rate of untrained data, 
respectively. 
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INTRODUCTION 
 

Biomass is globally acknowledged as a “zero carbon” renewable energy source 

(Huang et al. 2021), and its pyrolysis products hold vast potential for green economy 

applications, including biofuels and chemicals. Pyrolysis plays a crucial role in the 

formation and evolution of biomass fuels during the combustion process, exerting a direct 

impact on subsequent processes. Therefore, studying the pyrolytic properties of biomass is 

crucial for enhancing energy use efficiency (Gbolahan et al. 2022; Ke et al. 2022; Zhong 

et al. 2023). Due to the increasing demand for biomass fuels in science and industry, the 

study of the laws governing the pyrolysis and combustion behaviour of biomass is key to 
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the effective use of biomass fuels (Ragauskas et al. 2006; Zhu et al. 2021; Vo et al. 2022). 

The main components of biomass are hemicellulose, cellulose, and lignin; based on such a 

composition, chemical kinetics provides a theoretical basis for the quantitative description 

of pyrolysis reaction processes (Kersten et al. 2005; Ka et al. 2012; Ding et al. 2020; Ding 

et al. 2023). Biomass pyrolysis kinetics are used to characterize the effects of parameters 

such as reaction temperature and reaction time on the conversion of reaction products 

during thermal decomposition reactions of biomass (Xu et al. 2020). Many scholars have 

conducted extensive research on the kinetic parameters of biomass pyrolysis processes 

(White et al. 2011), providing important data for the design of pyrolysis reactors and 

subsequent combustion equipment. While the prediction results of the kinetic model agree 

to some extent with the experimental data, there are still significant discrepancies between 

them (Ding et al. 2019; Liborio et al. 2024). Machine learning models show exceptional 

accuracy in predicting highly non-linear processes and can automatically learn from data 

without the need for real operating and chemical conditions, greatly reducing the need for 

human intervention (Breiman 1996; Sunphorka et al. 2017; Naqvi et al. 2018; Hu et al. 

2022). These models have been used extensively to simulate thermal processes involving 

biomass pyrolysis, gasification, and combustion (Dubdub and Al-Yaari 2020; Bi et al. 2021; 

Yang et al. 2022). However, machine learning models have certain drawbacks: Machine 

learning models typically depend on significant amounts of high-quality data. Insufficient 

data or poor data quality can negatively affect model performance. Many machine learning 

algorithms are described as black-box models, meaning that their inner workings are 

complicated and difficult to elucidate, making it challenging to understand and characterize 

the model’s predictions (Dubdub and Al-Yaari 2020; Bi et al. 2021). In addition, machine 

learning models can accurately predict outcomes within the training domain, but they often 

perform poorly in domains outside the training data (Xing et al. 2019; Zhang et al. 2022). 

For example, forty-nine tobacco samples were used to study pyrolysis kinetics through 

machine learning approaches (Wei et al. 2023). A comprehensive artificial intelligence 

model without considering the chemical reaction mechanism was presented to predictive 

the thermal decomposition of rice husk (Alaba et al. 2019). A large amount of laboratory 

data poses significant challenges to predictive work. Moreover, non-mechanistic models 

lack interpretability and are highly dependent on data. 

To enhance predictive capability, an innovative framework has been developed to 

improve the generalization of predictive models. In the framework, kinetic models based 

on chemical reaction mechanisms were integrated with data-driven machine learning 

models. Kinetic models based on chemical reaction mechanisms were used to predict 

optimize initial values of the kinetic parameters (Kaczor et al. 2020; Dubdub and AlYaari 

2021; Marchese et al. 2024). The BP-ANN model was used to predict the error distribution 

of the kinetic parameters. A combination of kinetic and artificial neural network models 

was used to provide a comprehensive prediction of pyrolysis in the training and non-

training zones.  

Pine needles are abundant in resins and oils, known for their high calorific value, 

flammability, low ash content, and minimal emissions of nitrogen and sulfur pollutants, 

making them an effective biomass fuel source (Martín-Lara et al. 2016). In this study, pine 

needles were chosen as the research subject to explore a method that combines chemical 

kinetics-based models with data-driven models for predicting the pyrolysis process. The 

objectives of this study were to (1) Conduct pyrolysis experiments to investigate the 

relationship between pine needle conversion degree and temperature at various heating 

rates (10, 20, and 40 K/min). (2) Optimize the kinetic parameters of three components 
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using a kinetic model integrated with the mantis algorithm, and analyze the errors. (3) 

Utilize a BP-ANN model in conjunction with a genetic algorithm to predict errors in kinetic 

parameters and compare them with parameters obtained from a standalone kinetic model. 

 

 
EXPERIMENTAL 
 

Thermal Analysis Experiments  
Pine needles were selected as samples for thermogravimetric (TG) experiments. 

The samples were initially ground in a grinder, and the resulting particles were then sieved 

through an 80-mesh sieve to achieve uniform particle size. The samples were baked at 423 

K to ensure the evaporation of free and bound water (Zha et al. 2022). The pyrolysis 

process was conducted using a TA instruments (SDT Q600 Thermal Analyzer). Samples 

weighing 9.0 ± 0.5 mg were placed in an aluminum crucible and heated from 298  to 1173 

K at heating rates of 10, 20, or 40 K/min. Nitrogen was circulated at a rate of 100 mL/min 

to maintain an ambient gas environment during pyrolysis. 

 

Parallel Reaction Kinetic Modelling Predictions  
The concept of kinetic parallel reaction prediction aims to optimize kinetic 

parameters using a kinetic model combined with an improved dung beetle optimization 

algorithm with TG experimental data. The method aims to predict the pyrolysis process of 

pine needles by utilizing optimized parameters and comparing experimental results with 

predicted outcomes to derive prediction deviations. 

 

Kinetic modelling of parallel reactions  

The decomposition of pine needles is considered as the sum of parallel reactions of 

three components: hemicellulose, cellulose and lignin (Machmudah et al. 2020). The 

parallel kinetics scheme for the three components is given as Eq. 1, 

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖 → (𝑣𝑖)𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑠 + (1 − 𝑣𝑖)𝑐ℎ𝑎𝑟    (1) 

where vi represents the volatile yield of each component reaction. According to the 

Arrhenius equation, it is assumed that the reaction mechanisms of each component are all 

of one order. The reaction rates of these three components can be expressed as Eq. 2, 

d𝛼i

d𝑇
=

𝐴i

𝛽
e−

𝐸i
𝑅T(1 − 𝛼i)     i = 1~3       (2) 

where 𝛼i =
𝑚i0−𝑚i

𝑚i0−𝑚i∞
 denotes the degree of response of the i-th component. The conversion 

degree (a) can be defined as follows, 

𝛼 =
𝑚0−𝑚

𝑚0−𝑚∞
                                                                             (3) 

where 𝑚0 and 𝑚∞ represent the initial and final sample masses, respectively. 

The total conversion degree is defined as the sum of individual component 

conversions and was calculated as follows, 

𝛼 =
∑ 𝑟i(𝑚i0−𝑚i)i

𝑚i0−𝑚i∞
= ∑ 𝑟𝑖𝛼𝑖𝑖                                                  (4) 

where 𝑟𝑖  represents the initial mass fraction of component i, and ∑ 𝑟𝑖 = 1𝑖 , the overall 

kinetic equation for the three-component can be expressed as Eq. 5, 
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d𝛼

d𝑇
= ∑ 𝑟ii

𝐴i

𝛽
e−

𝐸i
RT(1 − 𝛼i)     i = 1~3                                 (5) 

In Eq. 5, eight unknown parameters must be determined to fit the experimental data. 

The objective of the optimization method is to minimize the difference between the 

experimental and simulated values. This is achieved by minimizing the sum of the squared 

differences between the experimental and simulated mass loss values at all heating rates, 

as shown in Eq. 6, 

𝑆𝐷𝑇𝐺 = ∑ 𝑆𝑗 = ∑ ∑ [(
𝑑𝛼

𝑑𝑇
)𝑗,𝑘

𝑒𝑥𝑝
− (

𝑑𝛼

𝑑𝑇
)𝑗,𝑘

𝑠𝑖𝑚𝑢]2 + ∑ ∑ [(𝛼)𝑗,𝑘
𝑒𝑥𝑝

− (𝛼)𝑗,𝑘
𝑠𝑖𝑚𝑢]2

𝑘𝑗𝑘𝑗𝑗    (6) 

here the superscripts “exp” and “simu” represent the experimental and simulated values, 

respectively. The index “j” represents the number of heating rates, and “k” represents the 

number of data points in the experiment. In optimization computations, the parameters R² 

and SEP were used to assess the discrepancy between experimental and simulated values.   

 

Improved Dung Beetle Optimization Algorithm 

The Dung Beetle Optimization Algorithm (DBO) is a mathematical model inspired 

by the behavior of dung beetles, including rolling balls, dancing, foraging, stealing, and 

breeding. The algorithm performs an iterative update through the following steps: 

initializing the dung beetle population, evaluating the fitness of individual dung beetles, 

updating the position and orientation of the dung beetles, and finally outputting the optimal 

solution (Xue and Shen 2022; Zhu et al. 2024). However, the dung beetle optimization 

algorithm has limitations in global search and tends to converge slowly when dealing with 

complex optimization problems. Therefore, this study proposes an improved dung beetle 

optimization algorithm (Shen et al. 2023). The improved dung beetle optimization 

algorithm enhanced the convergence speed and accuracy of the search process by 

introducing an initialized logistic chaos mapping population and improving the position 

update mechanism of individuals in the population using the Sinusoidal Algorithm (MSA). 

In addition, an adaptive Gauss-Cauchy perturbation modification strategy was used to 

enhance the adaptability and robustness of the model for complex problems. Compared to 

the traditional dung beetle algorithm, the MSADBO algorithm demonstrates a significant 

improvement in search efficiency and solution quality (Guo et al. 2023). 

 

Artificial Neural Network (ANN) Model Predictions   
The deviations predicted by the kinetic model based on chemical reactions were 

used as training inputs for the neural network. A genetic algorithm was then introduced to 

construct a data-driven back-propagation neural network model to predict the errors 

calculated by the kinetic model. 

 

Back propagating artificial neutral net (BP-ANN) model 

BP-ANN, a multilayer neural network using an error backpropagation algorithm, is 

renowned for its powerful learning and nonlinear mapping capabilities, making it one of 

The BP-ANN consists of an input layer, hidden layers, and an output layer, where 

information is transferred between neurons across different layers. The number of neurons 

in the input and output layers is determined by the input parameters and output targets, 

respectively, while the number of neurons in the hidden layer can be adjusted as needed 

(Cheng et al. 2022). 
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GA-BP-ANN Collaboration Model 

Genetic algorithms (GA) are widely used in artificial neural networks due to their 

robustness, stochastic nature, global perspective, and inherent parallel processing 

capabilities (Quan et al. 2016). The main objective of integrating genetic algorithms with 

artificial neural networks is to use genetic algorithms to optimize the weighting parameters 

of artificial neural networks, replacing traditional, inefficient, and less intelligent learning 

algorithms with more effective advanced methods based on genetic algorithms (Conn et al. 

1991). The backpropagation mechanism in BP-ANN searches for the extrema of a 

nonlinear function using the gradient method, which can lead to the issue of getting trapped 

in local minima. In contrast, GA possesses a powerful macro search capability and 

demonstrates excellent global optimization performance. They continuously enhance the 

quality of candidate solutions by simulating natural selection and genetic variation 

processes, thereby approaching closer to the global optimal solution. Therefore, this study 

combined GA with BP-ANN to leverage their complementary strengths, effectively 

overcoming the local extremum problem inherent in the backpropagation algorithm. This 

integration improved the overall performance and accuracy of the neural network (Zhu et 

al. 2020). 

 

Coupled Kinetic Model and GA-BP-ANN Model Predictions   
The kinetic model, enhanced by the dung beetle optimization algorithm, predicted 

the kinetic parameters of each component. These optimal parameters were then utilized to 

predict the pyrolysis of pine needles. The model predictions were compared with 

experimental (TG) data to calculate differences. These differences served as input data for 

training the GA-BP-ANN model to predict the error values generated by the kinetic model. 

The prediction results from the kinetic model were combined with the error predictions 

from the GA-BP-ANN model to generate the overall prediction data. Figure 1 illustrates 

the framework of this integrated approach. 

 

 
 

Fig. 1. Structure of coupled schematic diagram of the GA-BP-ANN 
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RESULTS AND DISCUSSION 
 

Thermogravimetric Analysis 
Figure 2 displays the conversion degree (𝛼) and conversion rate (d𝛼 d𝑇⁄ ) curves 

for three heating rates. The pyrolysis process of pine needles occurred between 420 K and 

800 K, with a peak occurring between 600 K and 650 K. Additionally, distinct shoulder 

regions appeared on either side of the peak. As the heating rate increased, both the shoulder 

and the peak shifted to higher temperatures, which is consistent with Chang et al. (2008). 

The increasing prominence of the shoulder region indicates an increase in the complexity 

of the reaction, implying the presence of multiple overlapping reactions. This complexity 

makes it challenging to construct an accurate kinetic model to predict pyrolysis behavior. 

 

 

Fig. 2. Curves of conversion degree (𝛂) and conversion rate (
𝐝𝜶

𝐝𝑻
) at three heating rates 

 

Kinetic Modelling Predictions 
In this study, a kinetic model and the MSADBO algorithm were introduced to 

predict the kinetic parameters of hemicellulose, cellulose and lignin from TG data. The 

optimized initial values of the kinetic parameters (A and Ea) for hemicellulose, cellulose,  

and lignin were calculated using the iso-conversion method of the Kissinger-Kai method 

(Xu et al. 2023), as shown in Table 1.  

 

Table 1. Optimal Parameters by MSADBO on Two Heating Rates 

Substances Parameters 
Initial 

values 
Search 
Range 

MSADBO 

Optimized 
Values 

Difference of 
paramaters 

Hemicellulose 

E1 (KJ/mol) 162.08 122-202 155.08 4.32% 

lnA1[ln(s-1)] 34.78 26-38 29.71 14.58% 

r1 0.38 0.28-0.48 0.48 26.32% 

cellulose 

E2 (KJ/mol) 165.46 125-205 107.46 35.05% 

lnA2[ln(s-1)] 31.46 24-36 32.93 4.67% 

r2 0.26 0.16-0.36 0.36 38.46% 

lignin 

E3(KJ/mol) 184.33 144-224 177.33 3.80% 

lnA3[ln(s-1)] 31.67 24-36 30.01 5.24% 

r3 0.36 0.16-0.56 0.16 4.32% 
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The parameters of the pine needle pyrolysis model to be optimized consisted of 

three aspects (9 parameters in total): the initial mass fraction (ri) and the chemical kinetic 

parameters (Ai, Ei) for hemicellulose, cellulose, and lignin. Since the sum of the mass 

fractions of the three main components is 1, only eight parameters need to be optimized. 

Table 1 shows the initial values and search ranges for these optimization parameters. Note 

that the optimization process did not include TG data at a heating rate of 40 K/min. The 

optimal kinetic parameters derived from the optimization were then used to predict the 

biomass conversion degree (𝛼) and conversion rate (𝑑𝛼 𝑑𝑇⁄ ), in the trained regions (10 and 

20 K/min) and the untrained region (40 K/min), as shown in Fig. 3. 

In Fig. 3 (a-c), the model’s trend in predicting the conversion degree at the three 

heating rates was generally accurate, but there were some notable differences, mainly from 

400 to 600 K, and 650 to 900 K. In Fig. 3 (d-f), the model predictions for the conversion 

rate showed significant errors in the shoulder regions on both sides of the peak, 

corresponding to the error regions in the conversion degree. These results indicate that the 

prediction model needed improvement and should be the focus of future research. 

Table 2 shows that the R² values for the kinetic modeling of conversion degree were 

all above 0.98, while the predicted R² values for conversion rate were all below 0.75. 

Additionally, the standard error of prediction (SEP) for conversion degree and conversion 

rate in untrained zones were 3.570% and 9.409%, respectively. Although the model 

performed well in predicting conversion, it still needs to be improved in predicting the 

conversion rate. This suggests that further optimization and refinement are needed for the 

prediction model to improve its overall predictive performance. 

 

Table 2. R2 and SEP from the Kinetic Model 

Heating 
Rate 

(K/min) 

Conversion Degree (𝛂) Conversion Rate (
𝐝𝛂

𝐝𝐓
) 

R2 SEP (%) R2 SEP (%) 

10 0.9898 4.049 0.7217 9.543 

20 0.9905 3.569 0.7455 9.405 

40 0.9905 3.570 0.7412 9.409 

 

GA-BP-ANN Model Predictions 
The GA-BP-ANN model was trained using experimental data collected at heating 

rates of 10 and 20 K/min. The trained model was used to predict the conversion degree (𝛼) 

and the conversion rate (𝑑𝛼 𝑑𝑇⁄ ) at the trained heating rates (10 and 20 K/min), as well as 

at an untrained heating rate (40 K/min). Figure 4 compares the experimental values with 

the predicted values at three heating rates. 

In Fig. 4 (a-f), the predictions for the conversion degree (𝛼) and conversion rate 

(𝑑𝛼 𝑑𝑇⁄ ) in the training temperature ranges (10 and 20 K/min) were in general agreement 

with the experimental data. However, around the peak temperature (about 630 K) for all 

three heating rates, there was a noticeable underestimation and leftward shift between the 

predicted and experimental values of d𝛼 d𝑇⁄ , particularly evident in the untrained range. 

This observation is supported by the R2 and SEP values in Table 3: within the trained range, 

the R2 values for predicted conversion degree (𝛼) were all above 0.995 and for 𝑑𝛼 𝑑𝑇⁄  they 

were all above 0.97. Conversely, in the untrained range (40 K/min), the R2 value dropped 

to 0.994, and for 𝑑𝛼 𝑑𝑇⁄  it dropped to approximately 0.95.  
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Fig. 3 (a-f). 𝜶 and 
𝐝𝜶

𝐝𝑻
 predictions from the Kinetic Model 

 

Compared to the traditional dynamics prediction model, the GA-BP-ANN model 

showed significant advantages with significantly lower SEP values and higher prediction 

accuracy. Specifically, the SEP value of the conversion degree in the training region was 

only 0.554% and 0.508%, and the SEP value of the conversion rate was 2.323% and 

2.171%. This result indicates that the GA-BP-ANN model was able to fit the training data 

well and provide relatively accurate predictions. However, when the model was applied to 

untrained regions, there was a significant drop in prediction performance. In these 

untrained regions, the SEP value for the degree of conversion increased to 0.774%, while 

the SEP value for the conversion rate increased to 4.615%. This change indicates that 

although the GA-BP-ANN model performed well in the trained regions, its predictive 
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ability was relatively weak in the untrained regions. Overall, as a data-driven approach, 

the GA-BP-ANN model demonstrated excellent performance within the training domain 

but exhibited significant deterioration in performance outside the trained conditions, 

highlighting the model’s limitations in extrapolating to untrained scenarios. 

 
Table 3. R2 and SEP from the GA-BP-ANN Model 

Heating Rate 
(K/min) 

Conversion Degree (𝛂) Conversion Rate (
𝐝𝛂

𝐝𝐓
) 

R2 SEP (%) R2 SEP (%) 

10 0.9955 0.554 0.9756 2.323 

20 0.9971 0.508 0.9763 2.171 

40 0.9948 0.774 0.9508 4.615 

 

 

Fig. 4 (a-f). 𝜶 and 
𝐝𝜶

𝐝𝑻
 predictions from the GA-BP-ANN Model 
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Kinetic-ANN Coupled Model Predictions 
A kinetic model was used to predict the main trends in pyrolysis, and a GA-BP-

ANN model was used to predict process deviations. Together, these two parts made the 

complete prediction. Figure 5 parts (a-f) depict the complete predictions of conversion 

degree (𝛼) and conversion rate (𝑑𝛼 𝑑𝑇⁄ ) by the coupled model for heating rates of 10, 20 

(trained region) and 40 K/min (untrained region). These figures show that the predictions 

of the coupled model closely matched the experimental data. The coupled kinetic-ANN 

model exhibited significant improvement over separate models, particularly in regions not 

explicitly trained. This indicates that coupled models were more effective in capturing and 

predicting trends in experimental data, especially when dealing with complex datasets. 
 

 
 

Fig. 5 (a-f). 𝜶 and 
𝐝𝜶

𝐝𝑻
 predictions from Coupled Kinetic-ANN Model 
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Table 4 presents the R2 and SEP for the conversion degree (α) and conversion rate 

(𝑑𝛼 𝑑𝑇⁄ ). The R2 values for the conversion degree (α) were all above 0.9999, while those 

for 𝑑𝛼 𝑑𝑇⁄  were above 0.999. The SEP for the conversion degree (𝛼) was below 0.25%, 

and for 𝑑𝛼 𝑑𝑇⁄ , it was below 0.45%, particularly in the untrained range (40 K/min), where 

the performance significantly exceeded that of a single model. This indicates that the 

coupled model performed well across the temperature range, offering substantial predictive 

advantages. However, at 40 K/min, there was a slight increase in the SEP, but it remained 

within acceptable limits. This could be attributed to unknown factors affecting the 

predictions of the coupled model in this range or insufficient training data. Nonetheless, 

the coupled model demonstrated high accuracy and robustness, significantly outperforming 

a single model in prediction. 

 

Table 4. R2 and SEP from the Coupled Kinetic-ANN Model 

Heating 
Rate 

(K/min) 

 Conversion Degree (𝜶)  Conversion Rate (
𝐝𝜶

𝐝𝑻
) 

R2 SEP (%) R2 SEP (%) 

10 0.99997 0.205 0.99961 0.402 

20 0.99993 0.227 0.99959 0.407 

40 0.99993 0.249 0.99944 0.447 

 
Accuracy of Kinetic, GA-BP-ANN and Coupled Kinetic-ANN Models 

This section compares the predictive effectiveness of the kinetic model, the GA-

BP-ANN model, and the coupled model (Fig. 6). Figure 6 (a-c) compares the prediction 

results of the conversion degree for three different heating rates among the three models 

with the experimental results. Figure 6 (d-f) compares the prediction results of the 

conversion rate for three different heating rates among the three models with the 

experimental results. The prediction curves of the coupled model were the most consistent 

with the experimental curves, followed by GA-BP-ANN, with the kinetic model 

performing the worst. Figure 7(a) compares the predictive effectiveness of the three models 

for conversion degree based on R² values. Although the kinetic model’s predictions were 

poor, its results were still higher than 0.98. The other models performed well in predicting 

conversion degree, with R² values above 0.99. In particular, the coupled kinetic-ANN 

model had an R² value of more than 0.9999, which was better than both the kinetic model 

and the GA-BP-ANN model. However, Fig. 7(b) shows that the kinetic model performed 

extremely poorly in predicting conversion rate (𝑑𝛼 𝑑𝑇⁄ ) at the untrained heating rate of 40 

K/min (R2: 0.74119), whereas the coupled model maintained a high level of accuracy with 

an R2 value of 0.99944. However, whether in the trained or untrained regions, it was found 

that the R² value of the conversion degree was consistently higher than that of the 

conversion rate. This difference may be due to the fact that the conversion rate is derived 

from the derivative of the conversion degree, making it more susceptible to noise. 

Figure 7 (a, c) compares the predictive effectiveness of three models for conversion 

degree based on R² and SEP. Although the kinetic model’s predictions were poor, the R² 

results were still higher than 0.98. The other models performed excellently in predicting 

the conversion degree, with R² values above 0.99. In particular, the coupled kinetic-ANN 

model achieved an R² value of more than 0.9999, outperforming both the kinetic model 

and the GA-BP-ANN model. This is consistent with the SEP trend, which was below 0.25% 

for the coupled model, compensating for the lack of predictive power of a single model in 

untrained regions. 
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Fig. 6 (a-f). Comparison of 𝜶 and 
𝐝𝜶

𝐝𝑻
 predictions at 10, 20 and 40 K/min from three models 

 

However, Fig. 7(b, d) shows that the kinetic model performed extremely poorly in 

predicting conversion rate (𝑑𝛼 𝑑𝑇⁄ ) at the untrained heating rate of 40 K/min (R2: 0.74119, 

SEP: 9.409%). In contrast, the coupled model maintained a high level of accuracy, with an 

R2 value of 0.99944 and an SEP value of 0.447%. It was found that the R2 value of the 

conversion degree was consistently higher than that of the conversion rate, whether in 

trained or untrained regions. This difference may be due to the fact that the conversion rate 

is derived from the derivative of the conversion degree, making it more susceptible to noise. 
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Fig. 7 (a-d). R2 and SEP comparison of 𝜶 and 
𝐝𝜶

𝐝𝑻
 predictions at 10, 20 and 40 K/min from three 

Models 

 
 

CONCLUSIONS 
 

1. This paper successfully proposed an innovative biomass pyrolysis modeling scheme 

that integrates a kinetic model based on chemical reaction mechanisms with an 

empirically-based machine learning model. When validated against experimental data, 

the method demonstrated extremely high prediction accuracy, particularly in unfamiliar 

scenarios, showcasing significant advantages. 

2. In the study of chemical reaction kinetic modeling, the introduction of the improved 

dung beetle optimization algorithm significantly enhances the capability to fine-tune 

kinetic parameters. This enhancement allows the model to more accurately describe 

complex pyrolysis processes and improves prediction reliability. 

3. Through comparison, it was found that among the three prediction models, predicting 

the degree of conversion performs better than predicting the conversion rate. This may 

be due to noise errors in the derivative calculation of conversion rate parameters. 
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