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The antioxidant properties of Ainsliaea acerifolia, a wild edible plant, were 
examined by ultrasonic-assisted ethanol extraction methods. The primary 
objective was to optimize the extraction conditions and accurately predict 
antioxidant activities using advanced machine learning models. The 
extraction conditions were optimized using Response Surface 
Methodology (RSM). Various parameters, including temperature, 
extraction time, and ethanol concentration, were adjusted to maximize 
antioxidant activity. The optimal conditions identified were a temperature 
of 68 °C, an extraction time of 86 min, and an ethanol concentration of 
57%. Under these conditions, the extracts exhibited the highest 
antioxidant activity. To enhance the predictive accuracy of antioxidant 
activity, an XGBoost (XGB) model was employed. The XGB model 
performance was evaluated and compared with the RSM model. The XGB 
model achieved an R² value of 94.71%, significantly outperforming the 
RSM model by 12.8%. This highlights the superiority of the XGB model in 
predicting antioxidant activities based on the given extraction parameters. 
Additionally, the study developed a graphical user interface (GUI). This 
GUI allows researchers and industry experts to input extraction conditions 
and obtain quick, accurate predictions of antioxidant activity.  
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INTRODUCTION 
 

Wild edible plants have been used as medicinal resources or food since ancient 

times (Park et al. 2003; Song et al. 2014). Wild edible plants have greater value as 

medicinal resources because generally they contain a larger number of bioactive substances 

compared to commercially cultivated vegetables (Sánchez-Mata et al. 2012). Their 

abundant bioactive compounds, such as caffeoylquinic acid, resveratrol, and 

epigallocatechin, are beneficial in inhibiting metabolic diseases such as diabetes, obesity, 

and hypertension, as well as circulatory diseases (Martínez et al. 2004; Anwar et al. 2022). 

Wild edible plants have garnered attention for their functional properties, especially with 

the growing interest in healthy eating habits (Lee et al. 2011). Researchers in Korea have 

focused on the edible wild plant Ainsliaea acerifolia. The functional compounds in A. 

acerifolia are reported to protect against alcohol-induced liver damage and inhibit 

carbohydrate absorption, thereby aiding in the prevention of diabetes (Lee et al. 2015; Lee 

et al. 2020).  
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Methods to maximize the efficacy of extracts from wild edible plants with various 

beneficial effects are being considered. As interest in environmental pollution increases, 

there has been research on eco-friendly solvents and auxiliary methods used in the 

extraction process without using chemical agents (Mohan et al. 2022).  

When ancient humans ate or stored plants, hot water treatment (blanching) was 

commonly used (Lee 1958). While hot water sterilized plants to facilitate storage, the heat 

of hot water could cause damage to phenolics or loss of antioxidants with the water (Ju et 

al. 2006; Mnich et al. 2020). However, hot water could also cause the degradation of plant 

cell walls, which facilitated the release of phenolic and flavonoid substances (Li et al. 

2010). It was also reported that heat treatment could remove the sugar portion from the 

glycosides of flavonoids, resulting in free hydroxy groups, thereby increasing their radical 

scavenging activity (Wang et al. 2019). 

Among eco-friendly extraction methods, ultrasound-assisted extraction generated 

cavitation bubbles have been shown to peel and erode the surface of wild edible plants, 

accelerating the exposure of new surfaces, allowing the extraction solvent to effectively 

penetrate the wild edible plants (Proestos and Komaitis 2006; Yusoff et al. 2022). Effective 

solvent penetration reduces extraction time and increases extraction efficiency (Tiwari 

2015). Additionally, it is possible to extract using eco-friendly solvents without having to 

rely on hazardous chemicals (More et al. 2022). For rosemary, ultrasound-assisted ethanol 

extraction was found to be more effective than ethyl acetate extraction (Vilkhu et al. 2008). 

This indicated that ultrasound treatment could reduce dependence on solvents and provide 

benefits for the environment and health. 

Another issue with solvent extracts is finding the appropriate conditions 

(dependent variables) that can maximize the target components or efficacy. Many 

researchers use response surface methodology (RSM) to optimize dependent variables 

through quantitative manipulated variables in order to optimize the efficacy of the extracts 

(Rodrigues et al. 2008; Xu et al. 2015; Tomšik et al. 2017). Meanwhile, machine learning 

(ML) models have recently gained traction for their potential use in biotechnology, 

biopharmaceuticals, and drug evaluation. ML can learn from pre-collected data, identify 

patterns, and predict outcomes (Mahesh 2020). In several studies, ML has demonstrated 

superior predictive performance compared to the quadratic equations of RSM. Particularly, 

ML can find trends and make predictions even with limited information about the 

correlations between variables. Therefore, the limitations of RSM, which requires 

correlations between dependent variables for accurate predictions, can be overcome by ML. 

Jan and Sit successfully optimized the supercritical fluid extraction parameters of 

Terminalia chebula using ML and RSM, achieving a high coefficient of determination 

(R²=0.9973) in their predictions (Jha and Sit 2021). When comparing RSM and ML models 

for the recovery of artemisinin, a precursor of antimalarial drugs, from Artemisia annua, 

the predictive performance of the ML model was superior (Pilkington et al. 2014). 

The XGB (eXtreme Gradient Boosting) model, which is one of the ML models, 

boosts (sequentially trains and assigns weights to incorrect predictions in the next model) 

multiple decision tree models and arranges the trained decision tree models linearly. By 

applying parallel learning to the existing boosting model, faster computing is possible. 

Regularization is applied to prevent overfitting of the model, providing higher predictive 
(Mitchell and Frank 2017). 

Ultrasound-assisted extraction of A. acerifolia was adopted to enhance the 

antioxidant activity of the extract. There is still a lack of research on optimizing the 

extraction temperature, time, and solvent concentration in ultrasound-assisted extraction. 

To the best of the authors’ knowledge, this is the first report combining RSM and XGB to 
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identify the optimal extraction conditions for achieving maximum antioxidant activity in 

A. acerifolia extracts and to predict the antioxidant activity. This study aimed to find the 

conditions that yield maximum antioxidant activity through RSM and to predict the 

antioxidant activity under various extraction conditions using the XGB model. Additionally, 

a graphical user interface (GUI) application was developed using the trained XGB model. 

This application allows for accurate predictions, saving time and resources compared to 

traditional experiments (Hamza et al. 2024). 

 

 

EXPERIMENTAL 
 

Material 
Ainsliaea acerifolia was procured from a natural farm in Yeoju, Gyeonggi 

Province. The purchased A. acerifolia was transplanted into pots with dimensions of 43 cm 

(width) × 36 cm (length) × 14 cm (height) and cultivated at the academic farm of 

Gyeongsang National University, with watering every 12 h. Only the leaves of the 

cultivated A. acerifolia were harvested and subjected to hot water pre-treatment. 

 

Hot Water Pretreatment  
The hot water pretreatment conditions were adopted from those with the highest 

ABTS scavenging activity in Table A1. Pre-treatment of A. acerifolia leaves involved 

placing the leaves and distilled water in a 1:20 (w:v) ratio into a 300 mL flask. The flask 

containing the sample was sealed and pre-treated in an autoclave (ST-65G, JEIO Tech, 

Korea) at 80 °C for 90 min. The pretreated A. acerifolia was then filtered by gravity using 

Whatman filter paper No. 2. After filtration, the residue was cooled using a deep freezer 

and then freeze-dried at –80 °C (FDA8505, IlShin Lab Co. Ltd, Korea). The lyophilized 

samples were ground into powder using a commercial pulverizer and stored at –20 °C. 

 

Ultra-Sonic Assisted Extraction 
The powdered samples were subjected to various temperatures, times, and ethanol 

concentrations according to the Box-Behnken design (BBD) conditions. The powdered 

samples were placed in Falcon tubes with different extraction solvent concentrations and 

subjected to ultrasonic extraction using an ultrasonic bath (JAC-2010, JINWOO, Korea) 

operating at a frequency of 40 kHz and a maximum input power of 300 W at room 

temperature. After the extraction was completed, the samples were centrifuged at 4,000 

rpm for 10 min. The supernatant was then separated and stored under refrigeration. 

 

Box-Behnken Experimental Design  
In this study, a BBD experimental design with three factors and three levels was 

adopted to optimize the ABTS antioxidant activity of A. acerifolia extracts via ultrasound-

assisted extraction. The selected independent variables and their coded levels within the 

respective ranges are presented in Table 1. The data analysis was performed using the 

statistical software Design-Expert (Version 13, State-Ease Inc., USA). 
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Table 1. Three-factorial Box-Behnken Design 

Variable Symbol Coding Level 

  -1 0 1 

Temperature (°C) X1 40 60 80 

Time (min) X2 60 90 120 

EtOH concentration (%) X3 50 75 100 

 

ABTS Radical Scavenging Activity 
The ABTS, 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical 

scavenging activity of the extracts was analyzed following the method described by Lee et 

al. (2016). The ABTS reaction solution was prepared by mixing 7 mM ABTS and 2.45 mM 

potassium persulfate, allowing the mixture to react in the dark at room temperature for 24 

h, and then diluting it with methanol to achieve an absorbance of 0.7 ± 0.02 at 735 nm. To 

190 µL of the prepared ABTS reaction solution, 10 µL of the ultrasound-assisted A. 

acerifolia extract (1 g/50 mL methanol) was added and allowed to react at room 

temperature for 6 min. The absorbance was measured at 517 nm using a UV-

spectrophotometer (SpectraMax 190, Molecular device, USA), and 98% ethanol was used 

as a control. The ABTS radical scavenging activity (ABTS) was calculated using Eq. 1, 
 

ABTS (%) = 1 −
𝐴𝑏𝑠 𝑆𝑎𝑚𝑝𝑙𝑒⬚

𝐴𝑏𝑠 𝐶𝑜𝑛𝑡𝑟𝑜𝑙⬚ ×  100     (1) 
 

where Abs Sample is the A. acerifolia extract and Abs Control is ethanol (98%). 

 

Gradient Tree Boosting algorithm (XGB) 
 The XGB algorithm generates and trains new decision trees by utilizing the 

residuals of previous decision trees to address their shortcomings. During the learning 

process, this method linearly combines the previous decision trees to achieve higher 

accuracy, functioning as a supervised learning algorithm. To prevent overfitting during 

training, regularized model formalization was employed, enhancing overall accuracy. This 

approach prunes the nodes of decision trees that contribute minimally to the final prediction, 

thereby reducing the overall size of the decision trees. Figure 1 presents a schematic 

diagram of the computational process of the XGB model. The dataset was randomly split 

into two subsets, with 70% used for training and 30% for testing. The implementation was 

carried out using the XGBoost library in Python (version 3.10.14). The training of the 

model aimed to minimize the mean squared error (Eq. 2), calculated as follows, 
 

1

𝑛
∑ (𝑦𝑖

∗ − 𝑦̃𝑖
∗)2𝑛

𝑖=1        (2) 
 

where MSE is mean squared error, 𝑦𝑖 is the correct answer of the i-th training data, and 

𝑦𝑖̃ is the predicted value for the i-th training data. 
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Fig. 1. Schematic diagram of the XGB model 
 

Graphical User Interface (GUI)  
A graphical user interface (GUI) was developed using the PyQt5 (version 5.15.10) 

library in Python (version 3.10.14), leveraging the optimal structure of the XGB model. A 

GUI displays the status of a computer program on a monitor, making it easy to interact with 

the device via mouse pointer and keyboard. The visual application allows users to quickly 

receive accurate predictions from trained models by adjusting conditions using buttons. 

The GUI supports researchers and developers in the field of predictive analytics by 

providing visualizations and insights into model performance. 

 

 

RESULTS AND DISCUSSION 
 
Antioxidant Activity of A. acerifolia Leaf Extracts using BBD 

The A. acerifolia antioxidant activity was highest at 77.7% with hot water 

pretreatment 80 °C, 90 min, leaf and distilled water 1:20 (w:v). These conditions were 

adopted for ultrasonic extraction (Table A1 in the Appendix). The Box-Behnken Design 

(BBD) was used to set the factors (temperature, time, ethanol concentration) to achieve the 

desired ABTS antioxidant activity values of A. acerifolia leaf extracts. As presented in 

Table 2, 27 experimental runs were conducted with three factors and three levels. The 

predicted coefficient of determination (R²) indicates that the model showed good fit, 

explaining 81.96% of the response variability. Equation 3 represents the quadratic 

polynomial model describing the BBD data, 
 

ABTS radical scavenging activity (%) =  

-366.64533 + 8.38361A + 1.59592B + 2.25303C - 0.0098AB - 0.013952AC + 

0.006218BC - 0.044167A2 - 0.007405B2 - 0.010958C2    (3) 
 

where A is temperature (°C), B is time (h), and C is EtOH concentration (%).  
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Table 2. Experimental and Predicted Values of ABTS Radical Scavenging 
Activity from Various Machine Learning Models  

 Variables Experimental Prediction 

No Temperature (°C) Time (min) EtOH (%) ABTS RSM XGB 

1 60 120 75 90.57±0.11 93.05 90.57 

2 60 120 50 87.31±0.61 78.79 87.31 

3 60 90 100 94.61±0.16 101.06 94.60 

4 80 120 100 91.19±0.93 87.57 91.19 

5 40 60 75 26.81±2.65 33.19 26.81 

6 40 90 75 68.33±3.80 48.04 68.33 

7 40 90 50 20.62±7.14 27.94 20.62 

8 40 60 50 18.17±1.05 15.84 18.17 

9 60 120 100 92.86±0.58 101.55 92.86 

10 80 90 75 90.24±0.17 95.30 90.24 

11 40 90 100 72.80±1.35 62.38 72.80 

12 80 120 75 90.81±0.43 87.67 90.81 

13 80 90 50 86.32±0.48 92.39 86.32 

14 80 60 100 91.38±0.64 85.53 91.38 

15 80 120 50 85.55±2.81 82.01 85.55 

16 80 60 50 87.95±0.63 91.01 87.94 

17 40 120 75 44.28±14.50 51.12 44.28 

18 60 60 75 90.01±0.25 85.82 90.01 

19 60 90 50 85.60±0.90 83.82 85.60 

20 80 60 75 90.54±0.36 91.15 90.54 

21 40 120 100 72.84±2.96 68.23 72.84 

22 40 120 50 22.85±6.13 28.26 20.62 

23 60 90 75 89.07±1.05 95.32 89.67 

24 60 60 100 92.50±0.51 88.80 94.60 

25 80 90 100 91.10±0.69 92.44 91.19 

26 40 60 100 33.07±1.41 44.77 48.40 

27 60 60 50 82.76±4.27 77.08 87.46 

 

BBD was utilized to set the factors (temperature, time, ethanol concentration) to 

achieve the desired ABTS antioxidant activity values of A. acerifolia leaf extracts. A, B, 

and C represent extraction temperature, extraction time, and extraction solvent 

concentration, respectively. AB, AC, and BC denote the interactions between factors, with 

BC reflecting the interaction between extraction time and extraction solvent concentration. 

 

Table 3. ANOVA for RSM Model 

Source 
Sum of 

Squares 
df 

Mean 
Square 

F-Value p-Value  

Model 16559.07 9 1839.9 24.06 < 0.0001 Significant 

A1) 10048.84 1 10048.84 131.43 < 0.0001  

B2) 235.13 1 235.13 3.08 0.0975  

C3) 1338.33 1 1338.33 17.5 0.0006  

AB 343.96 1 343.96 4.5 0.0489  

AC 887.67 1 887.67 11.61 0.0034  

BC 91.41 1 91.41 1.2 0.2895  
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A2 3356.19 1 3356.19 43.9 < 0.0001  

B2 207.77 1 207.77 2.72 0.1176  

C2 49.77 1 49.77 0.651 0.4309  

Residual 1299.8 17 76.46 1 1 1 

Corrected 
Total 

17858.88 26     

Note: 1) Temperature (°C); 2) Time (h); 3) EtOH concentration (%)  

 

To assess the statistical significance of the proposed model, an analysis of variance 

(ANOVA) was performed. The model was found to be significant with a high F-value 

(24.06) and a low p-value (<0.0001). As shown in Table 3, extraction temperature (A) had 

a substantial impact (p<0.0001), followed by extraction solvent concentration (C) 

(p<0.0006). This suggests that extraction temperature and solvent concentration 

significantly influenced the nutrient availability from the plant’s leaf cell walls. Increasing 

the temperature enhanced the solubility of polyphenols, promoting their release. However, 

exceeding the optimal temperature may lead to the degradation or coagulation of 

polyphenols along with proteins (García-Márquez et al. 2012). The 3D response surface 

graph can be used to observe the interactions between independent variables. The elliptical 

contour graph shown in Fig. 2 reflects the importance of the interaction of temperature, 

time, and solvent focus on antioxidant activity. One factor is fixed at an optimal value while 

the other two factors are changed within the experimental range. The main purpose of the 

RSM is to effectively detect the optimal extraction conditions to maximize antioxidant 

activity. Each contour curve represents a random combination of values within the range 

of the two variables. 

 

 
Fig. 2. 3D response surface plots for the ABTS antioxidant activity of the ethanol extract of A. 
acerifolia are shown based on the effects of (A) temperature, (B) time, and (C) solvent concentration 
 

Figure 2(B) shows the interaction between temperature and solvent concentration 

when time is kept constant at 120 min. The surface plots of the interaction conditions match 

well with the interaction conditions in Table 3 of the analysis of variance. The maximum 

antioxidant activity of 96.3% was achieved at an extraction temperature of 68 °C, 

extraction time of 86 min, and 57% ethanol concentration. The hot water pretreatment 

samples showed about a 20% increase in antioxidant activity after ultrasonic extraction. 

 

Gradient Tree Boosting algorithm modeling 
The experimental data on the antioxidant activity of ultrasound extracts from 

pretreated A. acerifolia under various conditions were used to train and test the XGB model. 
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The XGB framework consisted of three variables (extraction temperature, extraction time, 

extraction solvent concentration) and one outcome (ABTS scavenging activity). A high R² 

value serves as an indicator of the model's performance. The R² values for the training and 

testing data are shown in Fig. 3. The model structure consisted of 100 decision trees. The 

R² value for the training data was 0.9999, while the R² value for the testing data was 0.9471, 

indicating a prediction accuracy of 94.71%. Additionally, the MSE value was 6.66, 

showing a low prediction error. The XGB model demonstrated a 12.75% increase in 

prediction accuracy compared to the quadratic equation-based predictions of the previous 

RSM model. This indicates that the machine learning (XGB) model outperformed the 

quadratic equation model of RSM. 

 

 

Fig. 3. Prediction plots of train data and test data for the XGB model 
 
Comparison of RSM and XGB Results 

The performance of RSM and XGB were compared based on the predicted results. 

The antioxidant activity data of the leaf extracts were used to optimize and predict the 

outputs with the XGB model. The XGB network of the developed model learns from the 

interactions between antioxidant activities of the extracts with changes in temperature, time, 

and solvent concentration. XGB outperformed RSM and had higher prediction accuracy. 

XGB’s superior prediction performance stems from its data processing characteristics. 

RSM models are typically used for numerical optimization of each variable, but they can 

only create quadratic regression models, which limits their predictive capabilities. In 

contrast, the XGB model can capture and learn the nonlinear features of process variables 

in each tree, making it applicable across various fields. The predicted values of antioxidant 

activity for A. acerifolia leaf extracts using RSM and XGB are compared in Fig. 4. The 

MSE values for the RSM regression prediction and the XGB prediction are 1.78 and 0.36, 

respectively. Thus, XGB efficiently optimized and predicted the antioxidant activity of the 

extracts as a function of temperature, time, and solvent concentration. However, XGB 

models are limited to making predictions within the datasets of models trained under the 
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same conditions. To achieve higher predictive accuracy and wider application of the model, 

future researchers will need to unify the training conditions and increase the training data. 

 

 
Fig. 4. Comparison of actual ABTS antioxidant activity data with predicted data from RSM and XGB 
 

SHapley Additive exPlanations Values and Pearson Correlation Analysis 
SHapley Additive exPlanations (SHAP) calculates the contribution of each feature 

to the prediction, thereby explaining the predicted value. SHAP makes it possible to 

understand the most influential features in the model. Figure 5 (A) illustrates the SHAP 

values based on extraction temperature, time, and solvent concentration. Temperature 

showed the greatest contribution to the prediction of the antioxidant activity of the extracts. 

As the temperature increased, the predicted value also increased, indicating a positive 

correlation between temperature and antioxidant activity. Time and solvent concentration 

also demonstrated positive correlations. The Pearson correlation coefficient for the 

temperature variable was observed to be the highest at 0.7 (Fig. 5 (B)). This result aligns 

with the earlier SHAP values, showing the relationship between changes in input feature 

values and their corresponding predicted values. With this understanding, researchers can 

thoroughly explore the features that influence the outcome of the whole experiment. 

 

Development of a Graphical User Interface 
A user-friendly Graphical User Interface (GUI) was developed to predict the 

antioxidant activity of extracts. Figure 6 shows a schematic of the GUI. In the GUI, users 

can input extraction factors such as extraction temperature, time, and solvent concentration 

to predict the antioxidant activity of the extract. The GUI successfully made predictions in 

less than 0.4 seconds. The high prediction accuracy of the XGB model allows the tool to 

make precise predictions. This framework can simplify the analysis and decision-making 

process for researchers and industry experts. 
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Fig. 5. Plot the SHAP values (A) of the XGB model and the Pearson correlation plot (B) of the 

experimental data 
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Fig. 6. Schematic illustration of GUI 
 

 

CONCLUSIONS 
 
1. The conditions for maximizing the ABTS radical scavenging activity of extracts from 

A. acerifolia were identified through Response Surface Methodology (RSM) after hot 

water pre-treatment and ultrasonic extraction. The antioxidant activity was then 

predicted using the XGB model, and the predictions were compared with those of the 

RSM model. 

2. In the RSM, the maximum antioxidant activity of the extract was 96.3% at an extraction 

temperature of 68 °C, extraction time of 86 min, and 57% ethanol concentration. 

ANOVA analysis indicated that extraction temperature and solvent concentration were 

the variables with a strong influence on antioxidant activity. 

3. When the XGB model was trained with the previously measured data and used to 

predict antioxidant activity, it achieved an R² value of 94.71%, which was 12.8% higher 

than that of the RSM model. A comparative analysis of the SHAP values of the XGB 

model and the Pearson correlation of the training data indicated that temperature was 

the most influential variable, showing consistency between the two methods. 

4. The present results showed that the RSM model could identify the optimal extraction 

conditions to maximize antioxidant activity, and the XGB model that was trained could 

be used as a graphical user interface (GUI) program to make highly accurate 

antioxidant activity predictions. However, for researchers to utilize the model, it will 

need to be trained under the same conditions. The challenge remains to secure a wide 

range of data and validate various training conditions to improve the prediction 

accuracy and broaden the scope of the model. 
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APPENDIX 
 

Table A1. ABTS Radical Scavenging Activity of A. acerifolia Extract by Hot Water 

Pretreatment Conditions 

Variables 

ABTS 
Temperature (°C) Time (min) 

Leaf: Distilled Water  
(w:v) 

Non treated 8.49±0.47 

80 15 1:10 15.09±1.14 

80 15 1:20 13.82±0 

80 15 1:30 13.82±0 

80 30 1:10 34.13±2.32 

80 30 1:20 35.96±2.39 

80 30 1:30 36.41±2.43 

80 60 1:10 45.75±1.95 

80 60 1:20 49.95±0.41 

80 60 1:30 45.84±3.14 

80 90 1:10 61.21±0.01 

80 90 1:20 77.79±0.8 

80 90 1:30 76.38±2.91 

80 120 1:10 17.88±2.78 

80 120 1:20 16.09±0.01 

80 120 1:30 16.09±0.01 

90 15 1:10 37.95±0.68 

90 15 1:20 26.78±2.24 

90 15 1:30 19.42±3.04 

90 30 1:10 17.67±2.49 

90 30 1:20 33.07±1.41 

90 30 1:30 26.81±2.65 

90 60 1:10 18.17±1.05 

90 60 1:20 17.6±0.52 

90 60 1:30 12.8±1.35 

90 90 1:10 68.33±3.8 

90 90 1:20 20.62±7.14 

90 90 1:30 16.84±3.07 

90 120 1:10 42.84±2.96 

90 120 1:20 44.28±14.5 

90 120 1:30 22.85±6.13 

100 15 1:10 19.53±3.15 
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100 15 1:20 64.2±0.55 

100 15 1:30 60.87±1.63 

100 30 1:10 56.45±1.58 

100 30 1:20 45.82±3.29 

100 30 1:30 42.5±0.51 

100 60 1:10 40.01±0.25 

100 60 1:20 42.76±4.27 

100 60 1:30 46.1±2.51 

100 90 1:10 34.61±0.16 

100 90 1:20 39.07±1.05 

100 90 1:30 35.6±0.9 

100 120 1:10 36.73±1.6 

100 120 1:20 42.86±0.58 

100 120 1:30 40.57±0.11 

110 15 1:10 37.31±0.61 

110 15 1:20 49.02±0.93 

110 15 1:30 42.69±0.71 

110 30 1:10 41.12±0.43 

110 30 1:20 39.32±0.61 

110 30 1:30 40±0.86 

110 60 1:10 41.38±0.64 

110 60 1:20 40.54±0.36 

110 60 1:30 37.95±0.63 

110 90 1:10 39.85±1.47 

110 90 1:20 41.1±0.69 

110 90 1:30 40.24±0.17 

110 120 1:10 36.32±0.48 

110 120 1:20 37.98±1.92 

110 120 1:30 41.19±0.93 

 

 

 


