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Prior work on computer-vision wood identification (CVWID) for North 
American hardwoods yielded two independent deep learning models – a  
22-class model for diffuse-porous woods and a 17-class model for ring-
porous woods – but did not address semi-ring-porous woods nor provide 
a CVWID solution for an unknown specimen without a human first 
determining which model to deploy. As untrained human operators would 
lack the anatomical proficiency to differentiate among porosity domains, it 
is necessary to develop a consolidated model that can identify diffuse-, 
ring-, and semi-ring-porous woods. Previous research suggests that 
prediction accuracy might decrease as class number grows. A potential 
strategy to reduce the number of classes a CVWID system must consider 
at a time is to hierarchically deploy a cascade of models. In pursuit of a 
unified model that can cover North American hardwoods of all porosity 
types, this study compared the accuracies of a consolidated 39-class (ring- 
+ diffuse-porous) model and a consolidated 42-class (ring- + diffuse- + 
semi-ring-porous) model with a two-tiered, cascading model scheme 
whereby images are first differentiated into three porosity domain classes 
and then again into only those taxonomic classes with that porosity. The 
results showed that the cascading model scheme can mitigate the 
accuracy reductions incurred by the 42-class model and nearly eliminate 
the occurrence of cross-domain misidentifications.  
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INTRODUCTION 
 

Wood identification is an important tool for combatting the global and pervasive 

problem of illegal logging and timber trade (Johnson and Laestadius 2011; Dormontt et al. 

2015; Koch et al. 2015; Lowe et al. 2016; UNODC 2016), investigating supply chain 

integrity (Wiedenhoeft et al. 2019), and verifying compliance with import/export 

declaration requirements. Conventional wood identification relies on humans trained in 

wood anatomy to differentiate among taxa by observing anatomical features under a hand 

lens and/or microscope (Wheeler and Bass 1998; Gasson 2011). Learning to manually 

identify wood anatomically requires extensive training, and there is a severe shortage of 

reliable conventional wood identification capacity in North America (Wiedenhoeft et al. 
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2019) and worldwide. For this reason, scientists are utilizing advances in technology to 

develop non-conventional wood identification methods based on computer-vision, DNA, 

mass spectroscopy/spectrometry, and others to reduce dependence on human expertise in 

wood anatomy (Johnson and Laestadius 2011; Dormontt et al. 2015; Lowe et al. 2016). 

Proliferation of these new, non-conventional tools promises to mitigate the shortage of 

wood identification capacity and better empower industrial compliance with laws and 

regulations while also enabling law enforcement around the world to detect and prosecute 

illicit activity. 

In conventional human-based identification, a wood anatomist classifies a 

specimen based on observations of anatomical features (Wheeler and Bass 1998; Gasson 

2011). Until an anatomist can recognize a taxon on sight, s/he typically relies on a wood 

identification key to arrive at a potential identification and then compares the unknown 

specimen to a known reference specimen and confirms an identification. A key is a decision 

tree comprising a series of (often dichotomous) choices arranged in a hierarchy. At each 

level of the hierarchy, the anatomist must decide which of two (or more) descriptions best 

characterize the anatomical features they observe in the specimen. The option they select 

determines the next set of choices they must consider further down in the hierarchy, and so 

on, until they arrive at a terminal description and the name of the taxon (usually a genus, 

species, or subgeneric category). A well-designed wood identification key works because 

it focuses attention on only a limited set of anatomical features at a time and prevents wildly 

deviant conclusions – presuming each user decision is correct – by limiting the remaining 

options based on previous choices. It also reduces the number of possible solutions as the 

anatomist descends from one level to the next. In computer science terms, using a wood 

identification key is the process of choosing a path from the root node (the first level in the 

key) to a leaf node (the terminal identification) by means of a cascade of solitary decisions 

at each node on this path.  

In many wood identification keys that include temperate hardwood species, a set of 

alternatives regarding the size and distribution of pores across a growth ring (often referred 

to as porosity) appears early in the decision tree. These typically include diffuse-porous, 

ring-porous, and semi-ring-porous. Diffuse-porous woods are characterized by growth 

rings in which the earlywood pores are not conspicuously larger than the latewood pores 

(Fig. 1a, Panshin and de Zeeuw 1980).  Conversely, ring-porous woods typically exhibit 

growth rings with a zone of larger earlywood pores abruptly transitioning in size to 

latewood with conspicuously smaller pores (Fig. 1b, Panshin and de Zeeuw 1980).  

 

 
Fig. 1. Examples, from left to right, of the three porosity domains: diffuse-porous (a: Acer 
saccharum), ring-porous (b: Quercus falcata), and semi-ring-porous (c: Diospyros virginiana) 
woods 

a b c 
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Semi-ring-porous (or sometimes semi-diffuse-porous) is a category intermediate 

between the former and the latter in which growth rings exhibit a comparatively steady 

decrease in pore diameter from the earlywood to the latewood (Fig. 1c, Panshin and de 

Zeeuw 1980). 

The concept of porosity domain is well established in the wood anatomy and 

identification literature. The terms ring-porous and diffuse-porous have been used since at 

least the 19th Century (Roth 1895). The addition of the category semi-ring-porous in later 

years (Lodewick 1928; Brown et al. 1949) suggests that porosity exists along a spectrum. 

Wood belonging to the genera Carya and Populus, for example, exbibit pore sizes and 

distributions that commonly intergrade between ring- and semi-ring-porous, and semi-ring-

porous and diffuse-porous, respectively (Hoadley 1990). Despite the potential for 

confusion at the border of discrete categories assigned to a more-or-less continuous 

characteristic, these porosity categories, or domains, have proven useful for separating 

woods anatomically for more than a century. 

A non-conventional wood identification method that has shown great promise is 

computer-vision (Khalid et al. 2008; Esteban et al. 2009; Nasirzadeh et al. 2010; Wang et 

al. 2010; Hermanson and Wiedenhoeft 2011; Ravindran et al. 2018, 2022a; Hwang and 

Sugiyama 2021). Computer-vision wood identification (CVWID) involves the capture and 

analysis of digital images of wood specimens by trained classification models leading to 

an identification (as reviewed in Hwang and Sugiyama 2021). Recently, deep learning, a 

powerful and flexible approach to training classification models, has been employed to sort 

images into their appropriate, pre-defined classes (typically corresponding to species, 

genera and/or anatomically distinct subgeneric categories, e.g., Ravindran et al. 2018, 

2022a; Liu et al. 2024). In addition to high predictive accuracy, the relatively low cost and 

portability of CVWID systems such as the XyloTron (Ravindran et al. 2020) and 

XyloPhone (Wiedenhoeft 2020) make them readily deployable in the field.  

In previous work on North American hardwoods, Ravindran et al. (2022a,b) 

designed separate XyloTron models to differentiate 22 classes of diffuse-porous and 17 

classes of ring-porous woods. Deploying each model separately would require the operator 

to make a porosity domain classification (e.g., diffuse- or ring-porous) prior to selecting 

the appropriate model. As differentiating among porosity domains requires at least some 

understanding of wood anatomy, maintaining separate models falls short of the promise of 

full automation. To realize a unified CVWID model for North American hardwoods, it is 

necessary to combine ring-porous and diffuse-porous woods into the same model and add 

semi-ring-porous woods to cover the entire porosity domain spectrum.  

Consolidating models from disparate porosity domains has the potential to impact 

model performance. Previous research suggests that predictive accuracy could decrease as 

class number grows (Bilal et al. 2018; Shigei 2019; Ravindran et al. 2022a, b), so it is not 

unreasonable to expect an increase in misclassifications when combining a 22-class label 

space with a 17-class label space to yield a 39-class model. In addition, even highly 

accurate CVWID models have been shown to occasionally produce anatomically 

unexplainable predictions of the kind that no human would likely make (Ravindran et al. 

2021, 2022a,b), defined as a Type 3 misclassification in Ravindran et al. (2022a). In a 

consolidated model of North American hardwoods, credibility-reducing cross-domain 

misclassifications between woods of disparate porosity domains become a possibility.  

While they both arrive at a common end – namely, the assignment of a taxonomic 

label to a specimen of wood – the process of CVWID is different from conventional 

human-based wood identification. The image-based CVWID used in Ravindran et al. 
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(2022a,b) differs from human-based identification in two important ways. First, it is not 

clear how the features the model detects in the digital image correspond to anatomical 

features that would be used in a key. Second, computer-vision image classification is based 

on a single decision step as opposed to the explicit, cascading sequence of decisions found 

in a wood identification key. In short, though the features employed by the model are 

implicitly hierarchical, it is difficult to rigorously explain why a decision was made by a 

trained classification model.   

These differences contribute to a few limitations. CVWID, though rapid and highly 

accurate, still has the potential to make Type 3 misclassifications, those that trained humans 

would almost never make such as cross-domain misidentifications (e.g., confusing a 

hardwood for a softwood or a diffuse-porous wood for a ring-porous wood). Also, as the 

number of classes increases, the model has no explicit mechanism to break down the task 

of identification into smaller steps to limit the number of classes it must discriminate. 

Breaking down a CVWID model with many classes into a cascade or tree of models with 

fewer classes at each level might help reduce the occurrence of Type 3 misclassifications 

and better enable a CVWID system to handle larger numbers of classes without a drop in 

accuracy, especially in the medium-sized dataset regime typical in CVWID.  

Until a CVWID model can employ explicit and enumerable semantic information 

allowing it to identify the pixels in an image that correspond to particular anatomical 

features (such as vessels, rays, fibers, etc.), it is not possible to duplicate the decision-

making process of a wood identification key. It is possible to approximate that process by 

developing new classifiers based on wood anatomical character-based label spaces rather 

than taxonomic label spaces – for example, woods with marginal parenchyma vs. woods 

without marginal parenchyma.  

In pursuit of a unified model that can cover all commercial North American 

hardwoods, this study had two objectives. The first was to determine how accurately a 

convolutional neural network (CNN)-based model, trained using the same pipeline from 

Ravindran et al. (2022a, 2022b), can predict the 39 classes of (22) diffuse- and (17) ring-

porous woods from those publications plus three additional classes of semi-ring-porous 

woods. The second was to determine if gains in accuracy might be achieved (or losses in 

accuracy might be mitigated) by creating a two-level decision tree wherein images are first 

classified by a root classifier into one of three porosity domain classes (diffuse-, ring- or 

semi-ring-porous) and then again by a first level model covering only those woods with 

that porosity. The results of this investigation should help determine viable options for 

structuring future CVWID models aimed at covering large numbers of classes using a 

richer set of anatomical characters akin to a traditional wood identification key.  

 

 

EXPERIMENTAL 
 
Materials 
Specimens and images 

The datasets for this study comprised 1) the images of diffuse-porous specimens 

used in Ravindran et al. (2022a), 2) the images of ring-porous specimens used in Ravindran 

et al. (2022b), and 3) a new set of images from specimens of three semi-ring-porous species 

(Diospyros virginiana, Juglans cinerea, and Juglans nigra). The images for the training 

datasets were captured from specimens, chosen to represent characteristic wood anatomical 

variability for the classes, sourced exclusively from a) the MADw and SJRw collections at 
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the USDA Forest Products Laboratory and b) the Tw collection at the Royal Museum of 

Africa. The images for the testing datasets were captured from specimens sourced 

exclusively from the David A. Kribs (PACw) and teaching collections at Mississippi State 

University. Specimens in all xylaria were at moisture contents consistent with ambient, 

indoor, conditioned conditions (typically assumed to range from ~5% to 9% moisture 

content depending on season and location).  

To prepare each wood specimen for imaging, the transverse surface was polished 

in coarse-to-fine progression on a benchtop disc sander at grits of 80, 180, 240, 400, 600, 

800, and 1500, but note that testing-dataset images produced at much coarser grit levels or 

with a knife as in the field (Ravindran et al. 2023) are still largely identifiable, as are 

digitally perturbed testing dataset images (Owens et al. 2024) for a Peruvian woods 

CVWID model (Ravindran et al. 2021). The polished surfaces were imaged using the 

XyloTron platform at a linear resolution of ~3.1 microns per pixel. Multiple, non-

overlapping 2048 × 2048-pixel images (representing 6.35mm-by-6.35mm of tissue) were 

acquired from each specimen. Commonly, images are of heartwood, though some sapwood 

images are doubtless present for each class.  Images with a sapwood-heartwood transition 

were culled. 

 

Label spaces 

Descriptions of the six label spaces used in this study are shown in Table 1. The 

first three were used for the “domain-based” models: the 22-class label space for the 

diffuse-porous woods from Ravindran et al. (2022a), the 17-class label space for the ring-

porous woods from Ravindran et al. (2022b), and a new 3-class label space for semi-ring-

porous woods.  

 

Table 1. Descriptions of the Six Label Spaces Used in This Study 

 

  

 Label 
Spaces 

Description 

D
o

m
a

in
-

b
a

s
e

d
 M

o
d
e

ls
 

22DP 
The original 22-class label space including a class for each diffuse-
porous wood from Ravindran et al. 2022a (left column of Table 2) 

17RP 
The original 17-class label space including a class for each ring-
porous wood from Ravindran et al. 2022b (center column of Table 2) 

3SRP 
A new 3-class label space including a class for each semi-ring-porous 
wood from the current study (right column of Table 2) 

C
o

n
s
o

lid
a

te
d

 

M
o

d
e

ls
 39DP-RP 

A new 39-class label space including the 22 diffuse-porous classes 
from Ravindran et al. 2022a plus the 17 ring-porous classes from 
Ravindran et al. 2022b (left and center columns of Table 2) 

42DP-RP-
SRP 

A new 42-class label space including the 22 diffuse-porous classes 
from Ravindran et al. 2022a, the 17 ring-porous classes from 
Ravindran et al. 2022b, and the 3 semi-ring classes from the current 
study (all three columns of Table 2) 

P
o

ro
s
it
y
 

 M
o

d
e

l 

3POR 

A new 3-class label space representing the 3 porosity domains: 1) an 
aggregate diffuse-porous class including all the woods with diffuse-
porous structure (entire left column of Table 2), 2) an aggregate ring-
porous class including all the woods with a ring-porous structure 
(entire center column of Table 2), and 3) an aggregate semi-ring-
porous class including all the woods with a semi-ring-porous structure 
(entire right column of Table 2) 
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The classes comprising these three label spaces are detailed in Table 2. The next 

two label spaces are used for the “consolidated” models: a 39-class label space (39DP-RP) 

comprising all the classes from 22DP and 17RP, and a 42-class label space (42-DP-RP-

SRP) comprising all the classes from 22DP, 17RP and 3SRP. The final 3-class label space 

models the three porosity domains: an aggregate diffuse-porous (DP) class including all 

the woods with diffuse-porous structure (entire left column of Table 2);  an aggregate ring-

porous (RP) class including all the woods with a ring-porous structure (entire center 

column of Table 2); and an aggregate semi-ring-porous (SRP) class including all the woods 

with a semi-ring-porous structure (entire right column of Table 2). Details of label, 

specimen, image, and taxa counts are shown in Tables 3 and 4 by label space. When 

referring to a CVWID class, class names are written without italics, while italicization is 

used when referring to the same woods as botanical entities (e.g., the class Diospyros vs. 

the genus Diospyros). Finer details of the taxa included in the training and testing datasets 

for 39DP-RP and 42DP-RP-SRP are provided in Tables S1, S2 in the Appendix.   

 

Table 2. Porosity Domain Membership of Woods Used in Training and Testing 

Diffuse-porous (DP) 
(Ravindran et al. 2022a) 

Ring-porous (RP) 
(Ravindran et al. 2022b) 

Semi-ring-porous (SRP) 

AcerH (hard maples) 
AcerS (soft maples) 
Aesculus 
Alnus 
Arbutus 
Betula 
Carpinus 
Fagus 
Frangula 
Fruitwood (comprising:) 

• Crataegus spp. 

• Malus spp. 

• Prunus spp.  

(except P. serotina) 

• Pyrus spp. 

• Sorbus spp. 

Liquidambar 
Liriodendron 
Magnolia 
Nyssa 
Ostrya 
Oxydendrum 
Platanus 
Populus 
Prunus (P. serotina only) 
Rhamnus 
Salix 
Tilia 

Asimina 
Carya 
Castanea 
Catalpa 
Celtis 
Cladrastis 
Fraxinus 
Gleditsia 
Gymnocladus 
Maclura 
Morus 
QuercusR (red oaks) 
QuercusW (white oaks) 
Robinia 
Sassafras 
UlmusH (hard elms) 
UlmusS (soft elms) 

Diospyros  
JuglansC (J. cinerea) 
JuglansN (J. nigra) 
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Table 3. Training Dataset Details by Label Space 

Detail 
22DP 

(counts) 
17RP 

(counts) 
3SRP 

(counts) 
39DP-RP 
(counts) 

42DP-RP-SRP 
(counts) 

3POR 
(counts) 

Images 5184 4045 734 9229 9963 2716 

Specimens 504 452 54 956 1010 1001 

Taxa 98 64 3 162 165 163 

Classes 22 17 3 39 42 3 

These wood specimens were sourced from the USDA Forest Products Laboratory’s MADw 
and SJRw collections and the Royal Museum of Africa’s Tw collection. Images of the 
specimens from these xylaria were used only for training and not for testing. 

 

Table 4. Test Dataset Details by Label Space 

Detail 
22DP 

(counts) 
17RP 

(counts) 
3SRP  

(counts) 
39DP-RP 
(counts) 

42DP-RP-SRP 
(counts) 

3POR 
(counts) 

Images 1209 936 131 2145 2276 2276 

Specimens 284 198 28 482 510 510 

Taxa 69 40 3 109 112 112 

Classes 22 17 3 39 42 3 

These wood specimens were sourced from Mississippi State University’s PACw and teaching 
collections. Images of the specimens from these xylaria were used only for testing and not for 
training. 

 
Methods 
Machine learning models 

CNNs (LeCun et al. 1989) with ImageNet (Russakovsky et al. 2015) pretrained 

ResNet34 (He et al. 2015) backbones and custom classification heads were trained for each 

of the six label spaces. A two-stage transfer learning strategy (freezing the backbone and 

training only the randomly initialized custom head followed by full network fine-tuning) 

was employed to train the models along with a data augmentation strategy that included 

horizontal/vertical flips, small rotations, and cutout (Devries and Taylor 2017). For both 

the training stages, random patches of 2048 × 768 pixels were downsampled to 512 × 192 

pixels and fed into the network in mini batches of size 16. The Adam optimizer (Kingma 

and Ba 2015) with cosine annealing (Smith 2018) of the learning rate and momentum was 

used for updating the model weights during the training process. Further details about the 

architecture and the two-stage (Howard and Gugger 2020) transfer learning (Pan and Yang 

2010) training methodology can be found in Ravindran et al. (2019) and Arévalo et al. 

(2021). Scientific Python tools (Pedregosa et al. 2011) and the PyTorch deep learning 

framework (Paszke et al. 2019) were used for model definition, training, and evaluation.  

The predictive performance of the trained field models (the trained models obtained 

by using the entire training data) was evaluated using the top-1 and top-2 specimen level 

accuracies on the mutually exclusive (from completely different collections) testing 

dataset. The majority of the class predictions for the (up to 5) images contributed by a 

specimen was taken as the top-1 specimen level prediction. For top-2 accuracy analysis, if 

the true class of a specimen was one of the top-2 predicted classes in an equally weighted 

voting of (up to 5) image-level top-2 predictions, then the specimen was considered to be 

correctly classified. The field model performance was evaluated using the proxy field 

testing approach (in which specimens for training and testing were obtained from different 

xylaria) introduced in Ravindran et al. (2021). The importance of mutually exclusive 

training and evaluation datasets is elaborated in Ravindran and Wiedenhoeft (2022).  
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Models with a ResNet50 backbone were also trained and evaluated, and these 

results are presented in Table S3 and Figs. S1, S2 in the Appendix. Additionally, results of 

five-fold cross-validation analyses (i.e. internal validation) for both ResNet34 and 

ResNet50 based model architectures are presented in Table S4 and Figs. S3 – S6 in the 

Appendix. The field models were evaluated in the following manner under the following 

assumptions. 

 

Domain-based model scheme 

To test the individual accuracies of the domain-based diffuse- (22DP), ring- (17RP) 

and semi-ring-porous (3SRP) models, each model was run on the test dataset that 

corresponded to its porosity domain. In the case of actual field deployment, a specimen 

would first be examined by a human operator who would make a porosity domain 

determination and then select the corresponding domain-based XyloTron model: 22DP, 

17RP, or 3SRP (Fig. 2). These accuracies were evaluated under a best-case scenario 

assuming that the human operator made the initial porosity domain classification without 

error.  

 
Fig. 2. In the domain-based model scheme, a human would first make a (correct) porosity domain 
determination (diffuse-porous, DP; ring-porous, RP; or semi-ring-porous, SRP) for the specimen 
and then select the corresponding domain-based XyloTron model.  
 

Consolidated model schemes 

To test the accuracies of the consolidated models, the 39DP-RP model was run on 

the test dataset that included all diffuse- and ring-porous woods, and the 42-DP-RP-SRP 

model was run on the test dataset that included all diffuse-, ring-, and semi-ring-porous 

woods. In the case of actual field deployment, the human operator would deploy one model 

without first making a porosity domain determination (Fig. 3). In the case of the 39DP-RP 

model, we assume that there are no semi-ring-porous woods in this particular region of 

deployment.  



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

  

Owens et al. (2024). “Computer-vision wood ID-ing,” BioResources 19(4), 9741-9772.  9749 

 
Fig. 3. In the consolidated model schemes, a human does not need to first make a (correct) 
porosity domain determination. One XyloTron model would be deployed. In the case of the 39DP-
RP model (left), we assume that there are no semi-ring-porous woods in the region of 
deployment.  (Abbreviations: diffuse-porous, DP; ring-porous, RP; semi-ring-porous, SRP)  
  

Cascading model scheme 

To test the accuracy of a cascading model scheme, the 3POR XyloTron model was 

deployed first to classify the porosity domain of the image. Based on the output, the image 

was submitted to the XyloTron model that corresponded to the identified porosity domain. 

In the case of actual field deployment, the XyloTron software would implement the two 

models sequentially without need for the human operator to make a porosity domain 

determination (Fig. 4) or need to manually submit the image to the corresponding model 

as we have done here. 

 

 
Fig. 4. In the cascading model scheme, a human does not need to first make a porosity domain 
determination. Instead, the 3POR XyloTron model is deployed first to classify the porosity of the 
specimen (diffuse-porous, DP; ring-porous, RP; or semi-ring-porous, SRP). Based on the output, 
the XyloTron model that corresponded to that porosity domain type would then be deployed.  
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Model top-1 accuracies are reported below, and top-2 accuracies can be found in 

the Appendix. 

 

 
RESULTS AND DISCUSSION 

 
Domain-based Model Scheme Accuracy 

Confusion matrices for the domain-based diffuse- (22DP) and ring-porous (17RP) 

models can be found in Ravindran et al. 2022a and 2022b, respectively, along with 

misidentification analyses. Their respective top-1 predictive accuracies were 80.6% and 

91.4%. 

The top-1 predictive accuracy for the domain-based semi-ring-porous model 

(3SRP) was 100.0%, and it was tested on 3 specimens of Diospyros virginiana, 12 

specimens of Juglans cinerea, and 13 specimens of Juglans nigra. 

Assuming the XyloTron operator would be able to separate all the specimens into 

their correct porosity domains and apply the appropriate domain-based model to each 

specimen, the overall accuracy for the domain-based model scheme would be 85.9%. 

 

Consolidated Model Scheme Accuracies 

39-class consolidated model 

The top-1 predictive accuracy for the consolidated 39-class model (39DP-RP) was 

84.2%. Broken down by porosity domain, the predictive accuracy for diffuse-porous woods 

was 80.1% and for ring-porous woods was 90.0% (Fig. 5, Tables 5, 6).  
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Fig. 5. Confusion matrix of ResNet34 field model on test specimens for the consolidated 39DP-
RP model. Counts in the diagonal cells indicate correct predictions. Off-diagonal counts indicate 
misclassifications. The blue dotted lines delineate porosity domains. From AcerH to Tilia are 
diffuse-porous classes and from Asimina to UlmusS are ring-porous classes. Counts appearing in 
the top right region are cross-domain misclassifications for porosity (diffuse-porous woods 
mistaken for ring-porous woods). N = 482   
  

The confusion matrix for the consolidated 39DP-RP model appears in Fig. 5 and is 

separated into four regions by blue dotted lines, which delineate the boundaries between 

the two porosity domains on the vertical and horizontal axes. The diffuse-porous classes 

run from AcerH to Tilia while the ring-porous classes run from Asimina to UlmusS. Counts 

in the diagonal represent correct predictions. Off-diagonal counts indicate 

misidentifications. The upper right region of the matrix is populated by three cross-domain 

prediction errors representing three different diffuse-porous specimens misclassified as 

three different ring-porous woods. In contrast, the lower left region contains no cross-

domain errors showing that none of the ring-porous woods were misclassified as diffuse-

porous woods. Off-diagonal counts in the upper left and lower right regions indicate 

erroneous predictions within a porosity domain.  
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Table 5. Prediction Errors and Accuracies by Input Class for 39DP-RP (Diffuse-
porous portion of the dataset) 

Input  
Class Label 

Specimen 
Total 
Count 

Count 
Missed 

% 
Missed 

Mistaken Classes 
(Count) 

Count  
Correct 

%  
Accurate 

AcerH 9 0 0.0 -- 9 100.0 

AcerS 18 4 22.2 AcerH (3) 
Carpinus (1) 

14 77.8 

Aesculus 6 0 0.0 -- 6 100.0 

Alnus 8 3 37.5 Ostrya (2) 
Populus (1) 

5 62.5 

Arbutus 9 2 22.2 Fruitwood (1) 
Nyssa (1) 

 7 77.8 

Betula 33 8 24.2 Salix (4) 
Populus (2) 

AcerS (1) 
* Robinia (1) 

25 75.8 

Carpinus 9 0 0.0 -- 9 100.0 

Fagus 13 0 0.0 -- 13 100.0 

Frangula 1 1 100.0 Nyssa (1) 0 0.0 

Fruitwood 32 2 6.2 Nyssa (1) 
* UlmusH (1) 

30 93.8 

Liquidambar 10 9 90 Nyssa (9) 1 10.0 

Liriodendron 14 2 14.3 Nyssa (2) 12 85.7 

Magnolia 25 17 68.0 Arbutus (7) 
Nyssa (7) 

Populus (1) 
Prunus (1) 

* Castanea (1) 

8 32.0 

Nyssa 23 0 0.0 -- 23 100.0 

Ostrya 2 0 0.0 -- 2 100.0 

Oxydendrum 9 2 22.2 Fruitwood (1) 
Nyssa (1) 

7 77.8 

Platanus 3 1 33.3 Fagus (1) 2 66.7 

Populus 26 1 3.8 Alnus (1) 25 96.2 

Prunus 16 6 37.5 Salix (4) 
Fruitwood (2) 

10 62.5 

Rhamnus 2 0 0.0 -- 2 100.0 

Salix 13 0 0.0 -- 13 100.0 

Tilia 3 1 33.3 Nyssa (1) 2 66.7 

Class labels marked with an asterisk (*) indicate cross-domain misclassifications for porosity. 
Class labels highlighted in black indicate classes for which the domain-based 22DP model (from 
Ravidran et al. 2022a) classified all specimens correctly but for which the consolidated 39DP-
RP model misclassified at least one specimen. Class labels in gray indicate the opposite: the 
domain-based 22DP model misclassified at least one specimen while the consolidated 39DP-
RP model classified all specimens correctly. 
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Table 6. Prediction Errors and Accuracies by Input Class for 39DP-RP (Ring-
porous portion of the dataset) 

Input  
Class Label 

Specimen 
Total 
Count 

Count 
Missed 

% 
Missed 

Mistaken Classes 
(Count) 

Count  
Correct 

%  
Accurate 

Asimina 3 0 0.0 -- 3 100.0 

Carya 45 1 2.2 Gleditsia (1) 44 97.8 

Castanea 2 0 0.0 -- 2 100.0 

Catalpa 4 0 0.0 -- 4 100.0 

Celtis 3 0 0.0 -- 3 100.0 

Cladrastis 4 2 50.0 Fraxinus (1) 
Gymnocladus (1) 

2 50.0 

Fraxinus 4 0 0.0 -- 4 100.0 

Gleditsia 7 1 14.3 Gymnocladus (1) 6 85.7 

Gymnocladus 2 0 0.0 -- 2 100.0 

Maclura 3 1 33.3 Robinia (1) 2 66.7 

Morus 5 1 20.0 Gleditsia (1) 4 80.0 

QuercusR 41 2 4.9 QuercusW (2) 39 95.1 

QuercusW 55 5 9.1 QuercusR (5) 50 90.9 

Robinia 6 0 0.0 -- 6 100.0 

Sassafras 3 0 0.0 -- 3 100.0 

UlmusH 3 0 0.0 -- 3 100.0 

UlmusS 8 4 50.0 UlmusH (4) 4 50.0 

Class labels marked with an asterisk (*) indicate cross-domain misclassifications for porosity. 
Class labels highlighted in black indicate classes for which the domain-based 17RP model 
(from Ravidran et al. 2022b) classified all specimens correctly but for which the consolidated 
39DP-RP model misclassified at least one specimen. Class labels in gray indicate the 
opposite: the domain-based 17RP model misclassified at least one specimen while the 
consolidated 39DP-RP model classified all specimens correctly. 

 

A breakdown of prediction errors and accuracies by class appears in Tables 5 and 

6. Class labels marked with an asterisk (*) indicate cross-domain misclassifications for 

porosity. Class labels highlighted in black indicate classes for which the domain-based 

22DP or 17RP model (from Ravidran et al. 2022a,b) classified all specimens correctly but 

for which the consolidated 39DP-RP model misclassified at least one specimen. Class 

labels in gray indicate the opposite: the domain-based 22DP or 17RP model misclassified 

at least one specimen while the consolidated 39DP-RP model classified all specimens 

correctly. 

 

42-class consolidated model 

The top-1 predictive accuracy for the consolidated 42-class consolidated model 

(42DP-RP-SRP) was 77.1%. Broken down by porosity domain, the predictive accuracy for 

diffuse-porous woods is 69.7% and for ring-porous woods is 83.9%, and for semi-ring-

porous woods is 100% (Fig. 6, Tables 7, 8). 

The confusion matrix for the consolidated 42DP-RP-SRP model appears in Fig. 6 

and is separated into nine regions by blue dotted lines, which delineate the boundaries 

between the three porosity domains on the vertical and horizontal axes. The diffuse-porous 

woods run from AcerH to Tilia, the semi-ring-porous woods from Diospyros to JuglansN, 

and the ring-porous woods from Asimina to UlmusS. Counts in the diagonal represent 

correct predictions. Off-diagonal counts indicate misclassifications. The upper right region 

of the matrix is populated by seven cross-domain prediction errors representing five 

different diffuse-porous woods misclassified as three different ring-porous woods. In 
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contrast, the lower left region contains no cross-domain errors, showing that none of the 

ring-porous woods were misclassified as diffuse-porous woods. Off-diagonal counts in the 

upper left and lower right regions indicate erroneous predictions within the same porosity 

domain. The semi-ring-porous woods had no misclassifications. 

A breakdown of prediction errors and accuracies by class appears in Tables 7 and 

8. Class labels marked with an asterisk (*) indicate cross-domain misclassifications for 

porosity. Class labels highlighted in black indicate classes for which the domain-based 

22DP or 17RP model (from Ravidran et al. 2022a,b) identified all specimens without any 

misclassifications but for which the consolidated 42DP-RP-SRP model misclassified at 

least one specimen. Class labels in gray indicate the opposite: the domain-based 22DP or 

17RP model misclassified at least one specimen while the consolidated 42DP-RP-SRP 

model correctly classified all specimens. 

 

 
Fig. 6. Confusion matrix of ResNet34 field model on test specimens for label space 42DP-RP-
SRP. Counts in the diagonal cells indicate correct predictions. Off-diagonal counts indicate 
misclassifications. The blue dotted lines delineate porosity domains. From AcerH to Tilia are 
diffuse-porous classes, from Diospyros to JuglansN are semi-ring-porous classes, and from 
Asimina to UlmusS are ring-porous classes. Counts appearing in the top right region are the only 
cross-domain misclassifications for porosity domain (diffuse-porous mistaken for ring-porous). N= 
510 
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Table 7. Prediction Errors and Accuracies by Input Class for 42DP-RP-SRP 
(Diffuse-porous portion of the dataset) 

Input  
Class Label 

Specimen 
Total 
Count 

Count 
Missed 

% 
Missed 

Mistaken Classes 
(Count) 

Count  
Correct 

%  
Accurate 

AcerH 9 2 22.2 * Gleditsia (2) 7 77.8 

AcerS 18 7 38.9 Carpinus (3) 
Frangula (2) 

AcerH (1) 
* Gleditsia (1) 

11 61.1 

Aesculus 6 0 0.0 -- 6 100.0 

Alnus 8 3 37.5 Frangula (2) 
Carpinus (1) 

5 62.5 

Arbutus 9 1 11.1 Fruitwood (1) 8 88.9 

Betula 33 21 63.6 Salix (11) 
Frangula (4) 
Populus (3) 

* UlmusS (2) 
AcerS (1) 

12 36.4 

Carpinus 9 0 0.0 -- 9 100.0 

Fagus 13 0 0.0 -- 13 100.0 

Frangula 1 0 0.0 -- 1 100.0 

Fruitwood 32 2 6.3 Frangula (2) 30 93.8 

Liquidambar 10 3 30.0 Nyssa (3) 7 70.0 

Liriodendron 14 10 71.4 Liquidambar (3) 
Nyssa (3) 

Populus (3) 
Salix (1) 

4 28.6 

Magnolia 25 11 44.0 Liquidambar (3) 
Nyssa (3) 

Fruitwood (2) 
Populus (2) 

Alnus (1) 

14 56.0 

Nyssa 23 3 13.0 Carpinus (1) 
Fruitwood (1) 
Magnolia (1) 

20 87.0 

Ostrya 2 2 100.0 Fruitwood (2) 0 0.0 

Oxydendrum 9 4 44.4 Fruitwood (4) 5 55.6 

Platanus 3 1 33.3 * QuercusR (1) 2 66.7 

Populus 26 5 19.2 Frangula (2) 
Alnus (1) 
Salix (1) 

* QuercusR (1) 

21 80.8 

Prunus 16 11 68.8 Fruitwood (8) 
Frangula (3) 

5 31.3 

Rhamnus 2 0 0.0 -- 2 100.0 

Salix 13 2 15.4 Fruitwood (1) 
Frangula (1) 

11 84.6 

Tilia 3 3 100.0 Frangula (2) 
Alnus (1) 

0 0.0 

Class labels marked with an asterisk (*) indicate cross-domain misclassifications for porosity. Class 
labels highlighted in black indicate classes for which the domain-based 22DP model (from 
Ravidran et al. 2022a) classified all specimens correctly but for which the consolidated 42DP-RP-
SRP model misclassified at least one specimen. Class labels in gray indicate the opposite: the 
domain-based 22DP model misclassified at least one specimen while the consolidated 42DP-RP-
SRP model classified all specimens correctly. 
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Table 8. Prediction Errors and Accuracies by Input Class for 42DP-RP-SRP 
(Ring-porous and Semi-ring-porous portions of the dataset) 

P
o

ro
s

it
y

  

Input Class 

Specimen 
Total 
Count 

Count 
Missed 

% 
Missed 

Mistaken 
Classes 
(Count) 

Count  
Correct 

%  
Accurate 

R
in

g
 

Asimina 3 0 0.0 -- 3 100.0 

Carya 45 0 0.0 -- 45 100.0 

Castanea 2 0 0.0 -- 2 100.0 

Catalpa 4 0 0.0 -- 4 100.0 

Celtis 3 0 0.0 -- 3 100.0 

Cladrastis 4 4 100.0 Fraxinus (2) 
Celtis (1) 

Gymnocladus 
(1) 

0 0.0 

Fraxinus 4 0 0.0 -- 4 100.0 

Gleditsia 7 2 28.6 Fraxinus (1) 
Gymnocladus 

(1) 

5 71.4 

Gymnocladus 2 0 0.0 -- 2 100.0 

Maclura 3 2 66.7 Cladrastis (1) 
Robinia (1) 

1 33.3 

Morus 5 5 100.0 Gleditsia (3) 
Catalpa (1) 
Robinia (1) 

0 0.0 

QuercusR 41 1 2.4 QuercusW (1) 40 97.6 

QuercusW 55 1 1.8 QuercusR (1) 54 98.2 

Robinia 6 0 0.0 -- 6 100.0 

Sassafras 3 3 100.0 Catalpa (3) 0 0.0 

UlmusH 3 0 0.0 -- 3 100.0 

UlmusS 8 8 100.0 UlmusH (7) 
Celtis (1) 

0 0.0 

S
e

m
i-

ri
n

g
  Diospyros 3 0 0.0 -- 3 100.0 

JuglansC 12 0 0.0 -- 12 100.0 

JuglansW 13 0 0.0 -- 13 100.0 

Class labels marked with an asterisk (*) indicate cross-domain misclassifications for porosity. 
Class labels highlighted in black indicate classes for which the domain-based 17RP model 
(from Ravidran et al. 2022a) classified all specimens correctly but for which the consolidated 
42DP-RP-SRP model misclassified at least one specimen. Class labels in gray indicate the 
opposite: the domain-based 17RP model misclassified at least one specimen while the 
consolidated 42DP-RP-SRP model classified all specimens correctly. 

 

Cascading Model Scheme Accuracy 
The top-1 predictive accuracy for the 3-class porosity model (3POR) was 99.8%. 

Broken down by porosity domain, the ring-porous and semi-ring-porous accuracies were 

both 100.0%, while the diffuse-porous accuracy was 99.6% (Fig. 7). 

The confusion matrix for 3POR appears in Fig. 7. One specimen of Populus was 

misclassified as semi-ring-porous, which, as noted in the Introduction, is a sensible error 

(a Type 1 misclassification, per Ravindran et al. 2022a) for this taxon.  

If the output of the 3POR model were used to select which domain-based model to 

deploy next, the overall accuracy of the cascading models would be the product of the 
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3POR model accuracy × the accuracy of respective domain-based model (22DP, 17RP, or 

3SRP). The top-1 predictive accuracy for the cascading scheme in total would be 85.7%. 

Broken down by porosity domain, the diffuse-porous accuracy would be 80.3% (= 99.6% 

× 80.6%), the ring-porous accuracy 91.4% (=100.0% × 91.4%), and the semi-ring-porous 

accuracy 100.0% (=100.0% × 100.0%, Table 9). 

  

 
Fig. 7. Confusion matrix of ResNet34 field model on test specimens for label space 3POR. 
Counts in the diagonal cells indicate correct predictions. The lone off diagonal misclassification 
was a specimen of Populus (diffuse-porous) mistaken for a semi-ring-porous wood. N= 510. 

 

Accuracy Comparison Among Schemes 

The results of all models/schemes are summarized and compared in Table 9.  
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Table 9. Summary Counts and Predictive Accuracies for Each Model/Scheme  

Porosity  

Domain 

Test 

Specimen 

Count 

Domain-

based 

Model 

Accuracies 

39DP-RP 

Model 

Accuracy 

42DP-RP-

SRP Model  

Accuracy 

3POR × Domain-based  

Cascading Model  

Accuracies 

Diffuse-porous 284 80.6%*1 80.1% 69.7% 99.6% × 80.6% = 80.3% 

Ring-porous 198 91.4%*2 90.0% 83.9% 100.0% × 91.4% = 91.4% 

Semi-ring-

porous 

28 100.0% --- 100.0% 100.0% × 100.0% = 100.0% 

Overall 510 85.9% 84.2% 77.1% 99.8% × 85.9% = 85.7% 

*1 from Ravindran et al. 2022a; *2 from Ravindran et al. 2022b. 

 

Table S3 and Figs. S1, S2 provides the accuracies of the ResNet50 field models 

and associated confusion matrices. The cross-validation accuracies and confusion matrices 

for ResNet34 and ResNet50 models are presented in Table S4 and Figs. S3 – S6.  

The results of this investigation allow for multiple inferences about the impact of 

increasing class number and the viability of employing cascading model schemes.  

 

Performance of the Consolidated Models 
While it was reasonable to anticipate a sizable drop in predictive accuracy when 

combining the 22-class DP and 17-class RP label spaces, the consolidated 39-class model 

(39DP-RP) performed better than expected. When compared to the aggregate performance 

(85.9%) of the domain-based 22DP and 17RP models, the overall predictive accuracy 

(84.2%) of 39DP-RP fell by less than 2.0% (Table 9). Breaking that performance down by 

porosity domain, the table shows a decrease of less than 1.0% each for diffuse-porous and 

ring-porous domains. These data demonstrate that an increase in class number does not 

necessarily result in sizable reductions in predictive accuracy. In this study, that might be 

the case in part because the additional classes were fundamentally anatomically disparate. 

It is plausible that roughly doubling the number of classes in a model with anatomically 

similar classes might result in more substantial drops in top-1 accuracy, but until such 

studies are conducted, it remains an open question. 

When consideration is given to the number of classes identified without error, 

39DP-RP performed worse than the domain-based models. While 22DP and 17RP 

collectively identified 20 out of 39 classes perfectly (Ravindran et al. 2022a), 39DP-RP-

SRP lagged at only 17 (Tables 5 and 6). These data show that although the predictive 

accuracy of the 39-class model decreased very little, it was confusing specimens among 

more classes, some of which were Type 3 misclassifications across porosity domains. 

When the three classes of semi-ring-porous woods were added to the 39-class 

model to form a consolidated 42-class model, greater decreases in predictive accuracy were 

observed. When compared to the aggregate performance of the domain-based 22DP, 17RP, 

and 3SRP models (85.9%), the overall predictive accuracy of 42DP-RP fell by 8.8% (Table 

9). Breaking that performance down by porosity domain, the table shows decreases of 

10.9% and 7.5%, respectively, for diffuse-porous and ring-porous domains. The predictive 

accuracy for the semi-ring-porous woods remained unchanged at 100.0%. These data 

demonstrate that an increase in class number sometimes results in a sizable reduction in 

predictive accuracy, but interestingly the semi-ring-porous woods, which in broad terms of 

porosity domains are between ring-porous and diffuse-porous on the porosity continuum, 

did not provide either source or sink misclassifications (per Ravindran et al. 2022a). 

Rather, with semi-ring-porous classes present in the model, cross-domain errors between 
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diffuse-porous and ring-porous classes increased, with several diffuse-porous woods 

misclassified as ring-porous woods, rather than being misclassified as semi-ring-porous 

woods. The anatomical similarity between the latewood of some ring-porous woods and 

diffuse-porous woods might account for this, but it suggests that the consolidated 42-class 

model is not placing sufficient weight on the presence of large earlywood vessels 

characteristic of ring-porous woods. 

When consideration is given to the number of classes identified without error, 

42DP-RP-SRP performed worse than the domain-based models. While 22DP, 17RP and 

3SRP collectively identified 20 out of 42 classes perfectly, 42DP-RP-SRP lagged at only 

17. These data show that the sizable decrease in predictive accuracy of the 42-class 

consolidated model was accompanied by confusion among more classes. 

 

Viability of the Cascading Model Scheme 
As long as the predictive accuracy of the root model in a cascade (in this case the 

3POR model) is perfect – or close to perfect – cascading models seem to be a viable way 

to mitigate the loss of accuracy incurred by the consolidated models, especially 42DP-RP-

SRP. As the overall accuracy of the cascading scheme is the mathematical product of 

predictive accuracies of the root and subsequent level models, less-than-nearly-perfect 

performance at the root could ruin the prospects of mitigation at deeper nodes. This would 

apply even more so to cascading model schemes deeper than two levels. 

Another benefit of the cascading model scheme for classification of North 

American hardwoods is the reduction of cross-domain misidentifications for porosity. If 

the 3POR model were perfect and 22DP, 17RP and 3SRP exclusively comprise diffuse-

porous, ring-porous, and semi-ring-porous classes, respectively, there would be no 

opportunity for cross-domain misidentification to occur. Of course, the misidentification 

of one Populus specimen in the 3POR model (Fig. 7) guarantees a cross-domain 

misclassification at the first level due to those same conditions. This is emphasizing the 

importance of perfect-to-near-perfect predictive accuracy of the root model. Within the 

context of this work the goal is to deploy already-developed models, thus the emphasis on 

a high-performing root level classifier.  If one were developing an entirely new cascade of 

trained classifiers, classes that were misclassified by root- and first-level models could be 

included in all daughter nodes where they appeared. Such an approach is also used in the 

better-informed wood anatomical keys – taxa that a variably ring-porous or semi-ring-

porous, for example, are included in both sections of the key (e.g. Arévalo and Wiedenhoeft 

2022).  

 
Implications for Future CVWID Model Design  

While models with fewer classes might suffice for wood products manufactured 

from temperate logs harvested in the U.S.A., imported wood products necessitate the use 

of CVWID models that can identify a greater number of woods potentially from other 

continents including tropical woods, many of which lack growth rings altogether, thus 

rendering the 3POR model functionally irrelevant in the long term. As the need for 

expanding the taxonomic coverage of CVWID models grows, developers must discern 

ways to mitigate both predictive accuracy reduction and cross-domain misidentifications 

in larger models, and cascading model schemes might prove useful, but the extent to which 

they are scalable is unknown. Cascading model schemes also create a training problem in 

that when a new class is added, models at every tier of the decision tree might have to be 

retrained. To reduce that burden, developing highly accurate root and first-level classifiers 
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targeting crisp categorical traits (e.g. vessels present vs. vessels absent, or even wood vs. 

not-wood as the root classifier) trained on a wide range of woods from around the world 

might provide the initial binning necessary to train smaller classifiers at deeper nodes in 

the cascade (even if some of those classifications are incorrect, as noted above). Such 

targeted and crisp anatomical feature classifiers, rather than taxonomic classifiers, can be 

highly influential in pooling and chaining trained classifiers from different studies along 

with application-specific lower tier (deep and shallow) classifiers (see He et al. 2024 for a 

conceptual commentary on using feature-based CVWID for taxonomic identification).  

 

CONCLUSIONS 
 

1. When compared to the aggregate performance of the domain-based 22DP and 17RP 

models, the overall predictive accuracy of the 39DP-RP model fell by less than 2.0%. 

Breaking that performance down by porosity domain, the results showed a decrease of 

less than 1.0% each for diffuse-porous woods and ring-porous woods. These data 

demonstrate that an increase in class number does not necessarily result in a sizable 

reduction in predictive accuracy; however, the consolidated 39-class model confused 

more classes than the domain-based models and committed several Type 3 cross-

domain misclassifications for porosity.  

2. When compared to the aggregate performance of the domain-based 22DP, 17RP, and 

3SRP models, the overall predictive accuracy of the 42DP-RP model fell by 8.8%. 

Breaking that performance down by porosity domain, the table shows decreases of 

10.9% and 7.5%, respectively, for diffuse-porous and ring-porous woods while the 

predictive accuracy of the semi-ring-porous woods remained unchanged at 100.0%. 

These data demonstrate that an increase in class number can result in a sizable reduction 

in predictive accuracy; moreover, the consolidated 42-class model confused more 

classes than the domain-based models and committed more than double the cross-

domain misclassifications for porosity than that of the 39-class model.  

3. The overall accuracy of the cascading model scheme exceeded that of both the 

consolidated 39DP-RP and 42DP-RP-SRP models and came in only slightly lower than 

that of the domain-based model scheme (<1.0%). The cascading model scheme also 

reduced the number of cross-domain misidentifications for porosity domain to one.  

4. As long as the predictive accuracy of the 3POR model (or the any root model in a 

cascade) is perfect – or close to perfect – model cascading seems a viable way to 

mitigate the loss of accuracy incurred by the consolidated models, especially that of the 

42DP-RP-SRP model, though the scalability of cascading models is as yet unknown.  
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APPENDIX 

 

Table S1.Taxa Used in Model Training  

Acer macrophyllum 
Acer negundo 
Acer rubrum 
Acer saccharinum 
Acer saccharum 
Aesculus californica 
Aesculus glabra 
Aesculus hippocastanum 
Aesculus octandra 
Alnus rhombifolia 
Alnus rubra 
Alnus rugosa 
Alnus serrulata 
Alnus tenuifolia 
Arbutus menziesii 
Arbutus texana 
Asimina triloba 
Betula alleghaniensis 
Betula lenta 
Betula nigra 
Betula occidentalis 
Betula papyrifera 
Betula populifolia 
Carpinus caroliniana 
Carya aquatica 
Carya cordiformis 
Carya glabra 
Carya illinoinensis 
Carya laciniosa 
Carya myristiciformis 
Carya ovata 
Carya texana 
Carya tomentosa 
Castanea dentata 
Castanea pumila 
Catalpa bignonioides 
Catalpa speciosa 
Celtis laevigata 
Celtis occidentalis 
Celtis reticulata 
Cladrastis kentukea 
Cladrastis lutea 
Crataegus aestivalis 
Crataegus assurgens 
Crataegus compacti 

Crataegus cordata 
Crataegus cuneiformis 
Crataegus douglasii 
Crataegus macracantha 
Crataegus mollis 
Crataegus nitida 
Crataegus rivularis 
Crataegus rotundifolia 
Crataegus spathulata 
Crataegus succulenta 
Crataegus tomentosa 
Diospyros virginiana 
Fagus grandifolia 
Fraxinus americana 
Fraxinus nigra 
Fraxinus oregona 
Fraxinus pennsylvanica 
Fraxinus quadrangulata 
Gleditsia aquatica 
Gleditsia triacanthos 
Gymnocladus dioica 
Juglans cinerea 
Juglans nigra 
Liquidambar styraciflua 
Liriodendron tulipifera 
Maclura pomifera 
Magnolia acuminata 
Magnolia fraseri 
Magnolia grandiflora 
Magnolia macrophylla 
Magnolia tripetala 
Magnolia virginiana 
Malus baccata 
Malus coronaria 
Malus domestica 
Malus pumila 
Malus rivularis 
Malus sp. 
Morus alba 
Morus rubra 
Nyssa aquatica 
Nyssa biflora 
Nyssa ogeche 
Nyssa sylvatica 
Ostrya virginiana 

Oxydendrum arboreum 
Platanus occidentalis 
Populus angustifolia 
Populus balsamifera 
Populus deltoides 
Populus fremontii 
Populus grandidentata 
Populus heterophylla 
Populus tremuloides 
Malus angustifolia 
Populus trichocarpa 
Prunus americana 
Prunus angustifolia 
Prunus avium 
Prunus caroliniana 
Prunus emarginata 
Prunus myrtifolia 
Prunus nigra 
Prunus serotina 
Pyrus ioensis 
Quercus alba 
Quercus arkansana 
Quercus bicolor 
Quercus coccinea 
Quercus ellipsoidalis 
Quercus falcata 
Quercus georgiana 
Quercus ilicifolia 
Quercus incana 
Quercus laevis 
Quercus laurifolia 
Quercus lyrata 
Quercus macrocarpa 
Quercus marilandica 
Quercus michauxii 
Quercus montana 
Quercus myrtifolia 
Quercus nigra 
Quercus palustris 
Quercus phellos 
Quercus rubra 
Quercus shumardii 
Quercus stellata 
Quercus texana 
Quercus velutina 

Rhamnus californica 
Rhamnus cathartica 
Rhamnus caroliniana 
Rhamnus crocea 
Rhamnus frangula 
Rhamnus lanceolata 
Rhamnus purshiana 
Rhamnus tomentella 
Robinia neo-

mexicana 
Robinia 

pseudoacacia 
Salix laevigata 
Salix lasiandra 
Salix nigra 
Salix nuttellii 
Salix scouleriana 
Sassafras albidum 
Sorbus americana 
Sorbus aucuparia 
Sorbus decora 
Tilia americana 
Tilia caroliniana 
Tilia floridana 
Tilia heterophylla 
Tilia pubescens 
Ulmus alata 
Ulmus americana 
Ulmus crassifolia 
Ulmus rubra 
Ulmus serotina 
Ulmus thomasii 
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Table S2. Taxa Used in Model Testing 

Acer macrophyllum 
Acer negundo 
Acer rubrum 
Acer saccharinum 
Acer saccharum 
Aesculus 
californica 
Aesculus glabra 
Aesculus octandra 
Alnus incana 
Alnus rhombifolia 
Alnus rubra 
Arbutus menziesii 
Arbutus xalapensis 
Asimina triloba 
Betula lenta 
Betula nigra 
Betula occidentalis 
Betula papyrifera 
Betula populifolia 
Carpinus 
caroliniana 
Carya aquatica 
Carya cordiformis 
Carya glabra 
Carya illinoinensis 
Carya laciniosa 
Carya ovata 
Carya tomentosa 
Castanea dentata 
Catalpa speciosa 

Celtis occidentalis 
Celtis sp. 
Cladrastis lutea 
Crataegus aestivalis 
Crataegus 
calpodendron 
Crataegus douglasii 
Crataegus mollis 
Crataegus rivularis 
Crataegus spathulata 
Diospyros virginiana 
Fagus grandifolia 
Frangula purshiana 
Fraxinus nigra 
Fraxinus 
pennsylvanica 
Fraxinus 
quadrangulata 
Gleditsia triacanthos 
Gymnocladus dioica 
Juglans cinerea 
Juglans nigra 
Liquidambar styraciflua 
Liriodendron tulipifera 
Maclura pomifera 
Maclura sp. 
Magnolia acuminata 
Magnolia fraseri 
Magnolia grandiflora 
Magnolia macrophylla 
Magnolia tripetala 
Magnolia virginiana 

Malus angustifolia 
Malus coronaria 
Malus fusca 
Malus pumila 
Morus alba 
Morus rubra 
Nyssa aquatica 
Nyssa ogeche 
Nyssa sylvatica 
Nyssa sylvatica var. 

biflora 
Ostrya virginiana 
Oxydendrum 
arboreum 
Platanus 
occidentalis 
Populus angustifolia 
Populus balsamifera 
Populus deltoides 
Populus fremontii 
Populus 
grandidentata 
Populus heterophylla 
Populus tremuloides 
Populus trichocarpa 
Prunus americana 
Prunus angustifolia 
Prunus caroliniana 
Prunus emarginata 
Prunus myrtifolia 
Prunus serotina 

Quercus alba  
Quercus bicolor 
Quercus coccinea 
Quercus falcata 
Quercus laurifolia 
Quercus lyrata 
Quercus macrocarpa 
Quercus marilandica 
Quercus montana 
Quercus nigra 
Quercus phellos 
Quercus shumardii 
Quercus velutina 
Rhamnus crocea 
Robinia pseudoacacia 
Salix laevigata 
Salix lasiandra 
Salix nigra 
Salix scouleriana 
Sassafras albidum 
Sassafras sp. 
Sorbus americana 
Sorbus decora 
Tilia americana 
Tilia americana var. 

heterophylla 
Ulmus americana 
Ulmus thomasii 

 

Prediction Metrics for ResNet50 Field Model 
These tables and figures show the accuracies and confusion matrices of the 

ResNet50 field model for the 39- and 42-class models (39DP-RP and 42DP-RP-SRP, 

respectively). The model performance metrics were created using the predictions of the 

ResNet50 field model (the model that was trained with all the training datasets) on the 

testing dataset obtained from the specimens in the PACw and teaching wood collections at 

Mississippi State University.  

The accuracies of the ResNet50 models are in Table S3. Confusion matrices 

appear in Figs. S1 and S2.  

 

Table S3. Top-1 and Top-2 Specimen Level Accuracies of ResNet50 Field Model 

Label space Top-1 Accuracy (%) Top-2 Accuracy (%) 

39DP-RP 75.9 87.3 

42DP-RP-SRP 83.7 94.3 

Top-1 and top-2 specimen level accuracies of ResNet50 field model. The accuracies were 
computed using the testing specimens sourced from Mississippi State University’s PACw and 
teaching collections and were not used for model training. 
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Fig. S1. Confusion matrix of ResNet50 field model on test specimens for the consolidated 39DP-
RP model. Counts in the diagonal cells indicate correct predictions. Off-diagonal counts indicate 
misclassifications. The blue dotted lines delineate porosity domains. From AcerH to Tilia are 
diffuse-porous classes and from Asimina to UlmusS are ring-porous classes. Counts appearing in 
the top right and bottom left regions are cross-domain misclassifications for porosity. N = 482   
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Fig. S2. Confusion matrix of ResNet50 field model on test specimens for label space 42DP-RP-
SRP. Counts in the diagonal cells indicate correct predictions. Off-diagonal counts indicate 
misclassifications. The blue dotted lines delineate porosity domains. From AcerH to Tilia are 
diffuse-porous classes, from Diospyros to JuglansN are semi-ring-porous classes, and from 
Asimina to UlmusS are ring-porous classes. Counts appearing in the top right and bottom left 
regions are cross-domain misclassifications for ring-porous and diffuse-porous porosity domains. 
There were no semi-ring-porous misclassifications. N= 510 

 

5-fold Cross Validation Prediction Metrics 
 

These tables and figures show the five-fold cross-validation accuracies and 

confusion matrices of the ResNet34 and ResNet50 backbones for the 39- and 42-class 

models (39DP-RP and 42DP-RP-SRP, respectively). The confusion matrices and 

accuracies are obtained by aggregating model predictions on the validation splits over the 

five folds.  

 The specimen level five-fold cross-validation accuracies of the ResNet34 and 

ResNet50 are shown in Table S4. Confusion matrices for the Top-1 results ResNet34 and 

ResNet50 appear in Figures S3, S4 and S5, S6, respectfully.  
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Table S4. Top-1 and Top-2 Specimen Level Accuracies for the Cross-validation 
Analysis 

Label space 
ResNet34 Accuracies (%) ResNet50 Accuracies (%) 

Top-1 Top-2 Top-1 Top-2 

39DP-RP 93.9 97.8 92.2 95.6 

42DP-RP-SRP 95.1 98.5 93.0 96.2 

 

 

Fig. S3. Confusion matrix for specimen-level five-fold cross validation analysis of ResNet34 
model for 39DP-RP model. Counts in the diagonal cells indicate correct predictions. Off-diagonal 
counts indicate misclassifications. The blue dotted lines delineate porosity domains. From AcerH 
to Tilia are diffuse-porous classes and from Asimina to UlmusS are ring-porous classes. Counts 
appearing in the top right and bottom left regions are cross-domain misclassifications for porosity. 
N = 956. 

 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

  

Owens et al. (2024). “Computer-vision wood ID-ing,” BioResources 19(4), 9741-9772.  9770 

 
Fig. S4. Confusion matrix for specimen-level five-fold cross validation analysis of ResNet34 
model for 42DP-RP-SRP. Counts in the diagonal cells indicate correct predictions. Off-diagonal 
counts indicate misclassifications. The blue dotted lines delineate porosity domains. From AcerH 
to Tilia are diffuse-porous classes, from Diospyros to JuglansN are semi-ring-porous classes, and 
from Asimina to UlmusS are ring-porous classes. Counts appearing in the top right and bottom 
left regions are cross-domain misclassifications for ring-porous and diffuse-porous porosity 
domains. One specimen of fruitwood was misclassified as a semi-ring-porous wood.  N = 1010. 
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Fig. S5. Confusion matrix for specimen-level five-fold cross validation analysis of ResNet50 
model for 39DP-RP model. Counts in the diagonal cells indicate correct predictions. Off-diagonal 
counts indicate misclassifications. The blue dotted lines delineate porosity domains. From AcerH 
to Tilia are diffuse-porous classes and from Asimina to UlmusS are ring-porous classes. Counts 
appearing in the top right and bottom left regions are cross-domain misclassifications for porosity. 
N = 956. 
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Fig. S6. Confusion matrix for specimen-level five-fold cross validation analysis of ResNet50 
model for 42DP-RP-SRP. Counts in the diagonal cells indicate correct predictions. Off-diagonal 
counts indicate misclassifications. The blue dotted lines delineate porosity domains. From AcerH 
to Tilia are diffuse-porous classes, from Diospyros to JuglansN are semi-ring-porous classes, and 
from Asimina to UlmusS are ring-porous classes. Counts appearing in the top right and bottom 
left regions are cross-domain misclassifications for ring-porous and diffuse-porous porosity 
domains. Semi-ring-porous misclassifications are in the non-diagonal nearly central spaces 
between the dashed blue lines. N = 1010. 
 

 

 

 

 

 

 

 


