NC State
BioResources
  • Brief Communicationpp 6392-6400Shmulsky, R., Correa, L. M. S., and Quin, F. (2021). "Strength and stiffness of 3-ply industrial bamboo matting," BioResources 16(3), 6392-6400.AbstractArticlePDF

    There is a pressing need to develop engineering standards for timber- and other wood-based mats suitable for supporting construction vehicles, etc. In 2018, a group of mat producers and users began discussing a potential grading standard specific to mats. There are large gaps in the literature regarding the performance of the available raw materials as well as bolt-laminated mat systems. This study addresses the issue of determining the strength and stiffness values of a commercially sourced industrial bamboo mat. A total of seven 8 ft × 14 ft (2.44 m × 4.27 m) commercial bamboo mats were cut into 28 billets that were 21.5 in (54.6 cm) in width. The bamboo mat billets were evaluated for bending stiffness (modulus of elasticity [MOE]) and strength (modulus of rupture [MOR]) using a three-point static bending test. The 5th percentile non-parametric tolerance limit (5% NTL) and design value for fiber stress in bending (Fb) were calculated. The mechanical property values measured for the 3-ply bamboo mat were at least 25% less than values reported for mixed hardwood timber mats. This type of structural performance information is helpful and useful in the development of matting standards, as it describes the minimum performance characteristics for this type of composite matting.

  • Brief Communicationpp 6661-6668Ferro, F. S., Arroyo, F. N., Rodrigues, E. F. C., Fraga, I. F., Almeida, J. P. B., Ruthes, H. C., Aquino, V. B. M., Morales E. A. M., de Moraes, M. H. M., Lahr, F. A. R., and Christoforo, A. L. (2021). "Investigation of pore size distribution by mercury intrusion porosimetry (MIP) technique applied on different OSB panels," BioResources 16(4), 6661-6668.  AbstractArticlePDF

    Mercury intrusion porosimetry (MIP) is a technique used to characterize the pore size distribution and resin penetration in lignocellulosic materials, such as oriented strand board specimens (OSB), a multilayer panel utilized in structural applications. The method is based on the isostatic injection, under very high pressure, of a non-wetting fluid (mercury) into the porous material to determine parameters such as pore size distribution and percentage of porosity of the specimens. In this study, five different OSB were analyzed; they contained different wood species, resin type, and resin content. The panels manufactured with castor oil polyurethane resin showed porosity values in the range of 54.7 and 27.8%. This was a promising result compared with those obtained for panels made with phenolic resins, which are currently commercialized in Brazil.

  • Brief Communicationpp 6791-6798Cavus, V. (2021). "Weathering performance of mulberry wood with UV varnish applied and its mechanical properties," BioResources 16(4), 6791-6798.AbstractArticlePDF

    Mulberry wood is used in carpentry, fences, turnery, and garden architecture. In this study, various mechanical properties (modulus of rupture, modulus of elasticity, Janka hardness, and screw holding resistance) of mulberry (Morus alba) wood and its weathering performance after applying 3- and 5-layer UV system parquet varnishes with different surface applications were investigated. The varnished materials were aged using UV lamps for 252 h and 504 h, and the aged specimens were compared with non-aged specimens. The results of the variance analyses found that all tests were significant. According to the results, it was found that while the yellow color (b*) tone value, lightness, and glossiness (perpendicular (⊥) and parallel (║) direction at 20°, 60°, and 85° angles) values decreased for both varnish applications, the pendulum hardness value increased. The adhesion strength (pull-off) test (MPa) to the surface first decreased and then increased.