NC State
BioResources

BioResources welcomes one-to-two page opinion pieces dealing with the science and applications of materials derived from lignocellulosic sources. Preference is given to editorials that offer new or clarified views dealing with societal, environmental, or technical aspects. Editorials must fall within the scope of the journal (see home page). Editorials are selected by the editors from among those that are submitted. The selection is based on the editors’ opinion of what items are likely to foster a spirit of scientific exchange of ideas, as well as progress in the development of science and technology related to increased usage of renewable resources.

The following are examples of topics that would be considered especially appropriate in upcoming issues of BioResources:

  • Electricity generation by incineration of biomass vs. conversion to motor fuels
  • Identifying classes of chemicals most suitable for production from lignocellulosic source materials
  • Recycling of paper – when does it make sense and when not?
  • How close are we to producing excess electrical energy from integrated pulp and paper mills?
  • Carbon sequestration – what could we accomplish if we started a massive effort now?
  • Composting vs. soil contamination – arguments for landfilling, incineration, and recycling

Published Editorial Pieces

  • Editorialpp 6904-6906Hubbe, M. (2017). "To repair or not to repair cracked wood," BioRes. 12(4), 6904-6906.AbstractArticlePDF

    If only wood could be defect-free, then the minimum strength of solid-wood beams and other structures could be much higher. Structural failures could be avoided, and-or less material might be required in some applications. Cracks in wooden structures can be filled with adhesives or with thermoplastic composite material. But to approach the intended strength of defect-free wood, it is necessary to use other strategies such as glued rods and surface patches. The ultimate answer may lie in better species selection, tree breeding, forestry strategies, lumber cutting practices, and lumber drying practices to avoid cracks in the first place.

  • Editorialpp 6902-6903Wu, D., Qian, X., and Shen, J. (2017). "Macromolecular reorganization as a basis for converting cellulosic hydrogels into sustainable plastics," BioRes. 12(4), 6902-6903.AbstractArticlePDF

    The development of lignocellulose-derived sustainable plastics is an important strategy for a greener future. Cellulosic hydrogels, which are readily generated from a cellulosic source (e.g., wood pulp), can be converted into high-strength plastics by hot-pressing. In this process, cellulose macromolecules are fluidized and reassembled, leading to significant change of bonding interactions and structural characteristics. This interesting concept would open the door for new possibilities of bioproduct design.

  • Editorialpp 4497-4499Hubbe, M. A. (2017). "Book review of an open textbook: Sustainability: A Comprehensive Foundation," BioRes. 12(3), 4497-4499.AbstractArticlePDF

    Paper was once the lightest, lowest-cost way to make information widely available in a form suitable for study and self-improvement. But paper-based textbooks, in the modern era, tend to be heavy and they can also strain the budgets of typical students. Given the fact that you are now reading an open-access journal, you may understand why many faculty members would possibly want to use an open-access textbook for some of their courses. This editorial considers one such course, and the assessment is generally favorable. But in addition to the classroom, a good open textbook may be regarded as a suitable foundation for one’s research. By citing an open textbook in the introduction to your research article, you can provide your readers with the option of gaining enough background to better appreciate your latest research findings.

  • Editorialpp 4495-4496Lenahan, O. M. (2017). "Book review: Fabriano: City of Medieval and Renaissance Papermaking – The first 500 years," BioRes. 12(3), 4495-4496.AbstractArticlePDF

    The Italian town of Fabriano is known for producing high-quality handmade paper – an industry that began in the 13th century and that has endured for eight centuries. How did the industry take hold in this Italian town and how did it endure for so long? Author Sylvia Rodgers Albro tells this story in her new book, Fabriano: City of Medieval and Renaissance Papermaking. Readers who appreciate history and engineering will enjoy Albro’s narrative, wonderful photography, and diagrams as they bring to life the art, science, and social history of papermaking in Fabriano.

  • Editorialpp 4490-4494Okpala, C. O. R. (2017). "Reflecting in the woods: Can it help to enhance the formulation of (our) research questions?" BioRes. 12(3), 4490-4494.AbstractArticlePDF
    Nowadays, reflecting and reflective practice are being incorporated into undergraduate and postgraduate learning across disciplines, and thus, both can be seen as prerequisite(s) to achieving effective research activity. On the other hand, trees represent organisms characterized by a perennial lifestyle to produce a majority of terrestrial biomass. Trees, when put together as a group, take on the identity as “the woods”, which can be seen in many parts of the globe. In science, the choice and use of research questions has been considered as very useful in the definition, collection and reporting of (relevant) information. But, can reflecting in the woods enhance the formulation of (our) research questions? In this editorial, an attempt is made to respond to this question, to show that the woods has promising potential to provide a positive atmosphere for effective reflective activity for any (scientific) researcher.
  • Editorialpp 2252-2253Hubbe, M. A. (2017). "Why I don't do academic social media...or do I?," BioRes. 12(2), 2252-2253.AbstractArticlePDF

    A communications scholar at our university asked me recently whether I would take part in a debate about academic social media services such as ResearchGate. Yes, I responded, as long as I don’t have to argue the affirmative – that such online systems are necessarily a good thing. Personally I do not count myself as a user of academic social media, but I can easily understand why others could make an opposite decision. Academic social media can provide a way to get copies of full-length published articles, to pose questions to other researchers, to get various questions answered, and in general to foster relationships with well-networked and possibly influential people within one’s academic field. Or, like me, you might just enjoy having something mildly annoying that is fun to complain about.

  • Editorialpp 2249-2251Pal, L., and Joyce, M. (2017). "Paper need not be flat: Paper and biomaterials industries need to converge to bring about true innovation," BioRes. 12(2), 2249-2251.AbstractArticlePDF

    Biomaterials and new processes (3D printing and flexible hybrid electronics) offer opportunities to break free from a 2D paper world by allowing for the development of smart multi-dimensional structures. While there has been recent progress reported in each of these areas of technology, to date, the merger of these technologies has been very limited. We believe that their merger offers boundless opportunities and an opportunity for the paper industry to innovate a low cost, sustainable housing solution capable of promoting the well-being of its occupants while minimizing the environmental impact of its daily use.

  • Editorialpp 4-7Derikvand, M., Nolan, G., Jiao, H., and Kotlarewski, N. (2017). "What to do with structurally low-grade wood from Australia's plantation eucalyptus; Building application?," BioRes. 12(1), 4-7.AbstractArticlePDF

    About one million hectares of plantation hardwoods, mostly eucalyptus trees of different sub-species (E. nitens and E. globulus), are annually being managed in Australia, which provides a promising resource of raw materials for fibre industries. However, the timber boards required by the Australian hardwood sector are still being either imported from other countries or harvested from the native forests. There is a need to find a practical way to use the plantation eucalyptus in the Australian timber industry. However, the fibre-managed plantation eucalyptus produces structurally low-grade timber which could not be used as individual boards for structural applications—such as building construction. Unsuitable for appearance applications, the structurally low-grade boards may be suitable for producing innovative high-mass engineered timber products. This editorial will briefly discuss drivers, opportunities, and challenges associated with conducting such a research project.

  • Editorialpp 1-3Yao, Y. (2017). "Models for sustainability" BioRes. 12(1), 1-3.  AbstractArticlePDF
    As one of the major methodologies used in the modeling of sustainability, Life Cycle Assessment (LCA) is widely used to evaluate the environmental impacts of emerging technologies and to enhance decision making towards sustainable development. However, most of the current LCA models are static and deterministic. More insights could be generated when LCA models are coupled with higher-resolution techniques in a prospective fashion. Instead of trying to accurately predict the future, the purpose and value of integrated prospective models are to explore the boundaries of possibility and to shed light on directions that can lead to sustainable pathways. The biggest challenge is to determine the appropriate model resolution so that both big-picture insights and critical details are included. This challenge is hard to address, especially for interdisciplinary models that try to incorporate more than one dimension related to sustainability. However, improvements can be made continually through efforts from a growing population of interdisciplinary researchers.
  • Editorialpp 8119-8122Zhang, A., and Shen, J. (2016). "Adding growth-promoting ingredients in activated sludge process as a troubleshooting strategy for pulp and paper mill wastewater treatment," BioRes. 11(4), 8119-8122.AbstractPDF
    The activated sludge process is a well-established technology in the secondary treatment of pulp and paper mill wastewater. Maintaining the activities of microorganisms and allowing them to thrive, metabolize, and grow robustly is essential for efficient biological reactions. To this end, a scientific formulation of growth-promoting ingredients (containing stimulants, buffers, micronutrients, etc) provides a useful strategy for addressing the impact of fluctuations in process conditions involved in the pulp and paper production. Lots of potential exists in terms of the use of these “smart” ingredients to meet stricter discharge limits.
  • Editorialpp 8116-8118Hubbe, M. A. (2016). "My production facility, my laboratory of discovery," BioRes. 11(4), 8116-8118.AbstractArticlePDF

    By exercising of one’s curiosity, in combination with a lot of persistence, it is possible to solve some seemingly intractable problems. Many readers of this journal will have spent much, if not all of their careers, in university laboratories. In such settings there is an understandable emphasis on understanding underlying reasons. In other words, one is expected to focus on “why things happen” rather than just getting results. But if such an approach works well at the university, how about applying it at the production facility? This editorial features the stories of a man who was brave enough to spend his career asking “why” questions while working to improve the operations of paper mills.

  • Editorialpp 5658-5659Gangwar, A. K. (2016). "Benefits of polycups stock over other waste paper grades in paper recycling," BioRes. 11(3), 5658-5659.AbstractPDF

    It is never too late or too early to invent alternative processes for the betterment of our routine life. For paper production, trees are being cut in huge quantities each day, and this directly affects our day to day life by making atmospheric conditions less favorable. Waste paper can be recycled on average 4 to 6 times while maintaining acceptable qualities in recycled paper. To save forest resources, we should move ahead towards using more and more waste paper for paper production. A wasted resource can be recycled either to make the same product or by manufacturing new products, e.g. cardboard boxes, newspaper, writing and printing papers, and paper bags, etc. Several waste paper grades are not being fully utilized, and their use might allow increased paper recycling to produce new recovered paper with specified paper qualities. Polycup stock is an example of an under-utilized type of wastepaper that has the potential to substitute effectively for virgin pulp production.

  • Editorialpp 5656-5657Hubbe, M. A. (2016)."Paper or plastic? Yes, but not as a mixture," BioRes. 11(3), 5656-5657.AbstractPDF

    As expressed by the chorus lyrics of a song by Dan Einbender, “it really isn’t garbage ‘til you mix it all together. It really isn’t garbage ‘til you throw it away. Separate your paper, plastic, compost, glass and metal. Then you get to use it all another day.” It’s worth paying attention to these lyrics once again in the face of yet another type of product that is starting to show up in stores. Extruded sheets of polyethylene (no. 2 plastic) with as much as 80% ground calcium carbonate content are being sold as “paper”. Calcium carbonate is widely used as a component of real paper. However, it rubs me the wrong way when the word “paper” is being used to refer to something that has no fibers in it and is not formed on a screen and dried. My more serious concern is that such materials, if they become widely used, have the potential to contaminate paper recycling operations.

  • Editorialpp 2968-2971Cratty, C. (2016). "The artistic possibilities of cellulosic fibers," BioRes. 11(2), 2968-2971.AbstractPDF
    Plant fibers have been used for over 2,000 years to make paper. When the process of hand papermaking paled, I set out to find a way to use cellulosic fibers as paint. A decade of experimenting led to the choice of 3 main fibers that worked best. Methods of cooking, preparing, coloring, and drying were tested and refined. Using pulp as paint brought me the innovative techniques I developed in this new craft medium and led to recognition as a Tennessee Master Craft Artist. I continue to experiment with new ways to use pulp as paint.
  • Editorialpp 2964-2967Barrett, T. (2016)."Enzymatic pretreatment during 15th to 18th century papermaking in Europe," BioRes. 11(2), 2964-2967.AbstractPDF
    Enzymatic pretreatment of cellulose is generally considered to be a new area of research, but in fact it was a standard step in European pre-industrial papermaking between 1300 and 1800. Specialized handmade papers are routinely prepared in our Center for use in the care and conservation of rare books and manuscripts. Our attempts to replicate some of the early papers have led us to an investigation of retting (or fermentation) of hemp and cotton fiber as a pre-beating step. Results of twenty-two production runs show that increased fermentation time gives increased Canadian Standard Freeness and improved formation quality while permitting a decrease in beating time.
  • Editorialpp 6-7Gangwar, A. K., Prakash, N. T., and Prakash, R. (2016). "Questioning conventional wisdom regarding the most suitable sequence of enzyme usage in pulp bleaching," BioRes. 11(1), 6-7.AbstractPDF
    Increased public scrutiny and governmental legislation towards the pulp and paper industries have motivated industrialists and researchers to seek improved bleaching sequences having the potential to minimize pollutants in bleach effluent generated during manufacturing of paper. Discovery of toxic chlorinated organics and their components in bleach effluents has focused people’s attention towards finding alternative ways of bleaching pulp. Use of enzymes at industrial scale has become well known, but still it is not clear whether the sequence of enzymatic treatment most often employed in industrial applications represents the best overall practice. The point of enzyme addition is critically important to maximize benefits. Many publications describe the use of an enzyme treatment stage before the use of chemicals in a bleaching process. Insufficient attention has been paid to the alternatives of adding an enzyme in between chemical bleaching agents (intermediate) or at the end of the bleaching process.
  • Editorialpp 3-5Zhu, S., Wang, K., Huang, W., Huang, W., Cheng, B., Chen, J., Zhang, R., Chen, Q., and Wu, Y. (2016). "Acid-catalyzed hydrolysis of lignocellulosic biomass in ionic liquids for ethanol production: Opportunities & challenges," BioRes. 11(1), 3-5.AbstractPDF
    Lignocellulosic biomass (LB) is potentially a relatively inexpensive and abundant feedstock for ethanol production. One of the most challenging steps during the lignocellulosic ethanol production is to convert the carbohydrates in LB to the fermentable reducing sugars (FRS) in an economically viable and environmentally friendly way. The acid-catalyzed hydrolysis of LB in ionic liquids (ILs) has provided a promising technical tool to improve upon the traditional FRS production process. Compared to the conventional FRS production process from LB via the acid or enzymatic hydrolysis method, it has many advantages, such as a simplified process, mild reaction conditions, low acid consumption, and low equipment investment. However, there are still some technical challenges that need to be solved regarding its use at an industrial scale, for example, improving its reaction selectivity, developing effective methods to separate the FRS and ILs, and alleviating the negative effect of the remaining ILs in FRS on subsequent ethanol fermentation. This editorial will give a brief discussion about opportunities and challenges of the acid catalyzed hydrolysis of LB in ILs for ethanol production.
  • Editorialpp 1-2Hubbe, M. A., and Lucia, L. A. (2016)."BioResources: Ten years of service for the progress of the science and technology of lignocellulosic products," BioRes. 11(1), 1-2.AbstractPDF
    The co-editors of BioResources note the completion of our first ten years. We think that the journal can be judged as a success based on having achieved an impact factor of about 1.4 each year since 2009 and having reached a publication rate of about 700 articles per year. We strive to be a “people’s journal” serving scientists, students, and society. We plan to continue emphasizing editorial pieces and review articles, which supplement our main service of publishing peer-reviewed articles dealing with the science of lignocellulosic materials, chemicals, and their uses. We also support undergraduate scholarship in our academic department, including tuition payment, opportunities for pre-editing work, and support for undergraduates to attend conferences, etc.
  • Editorialpp 6318-6320Ali, O. F., and Koukoulas, A. A. (2015). "Approaches to energy pellet cost and quality optimization" BioRes. 10(4), 6318-6320.AbstractPDF
    As the global demand for biomass-derived energy pellets continues to expand, industry focus is expected to quickly migrate from project development to ways of lowering operating costs. Process optimization and the utilization of low-cost feedstocks are expected to be of special interest. This new focus will present opportunities for targeted research that can utilize low-value wood and biomass feedstocks, increase yields, and improve product quality.
  • Editorialpp 6314-6317Hao, X., Liu, C., Cao, H., Liu, Y., Peng, H., and Shen, J. (2015). "Use of byproduct from cellulosic ethanol production as an additive for concrete: A possible win-win strategy?" BioRes. 10(4), 6314-6317.AbstractPDF
    Technologists are facing increasing demands to achieve ecologically sustainable industrial practices. Currently the concrete industry is a significant contributor to greenhouse gas emissions. On the other hand, the scaling up of cellulosic ethanol technology has not been a very easy task. In this context, the integration of “greener” concrete with cellulosic ethanol technology may open up promising possibilities. The solid byproducts from cellulosic ethanol production process have been demonstrated to increase the strength of concrete structures when used as a partial cement replacement. Such a delicate integration can also lead to reduction in both carbon footprint and product cost. The possible commercialization of the integrated technologies would provide win-win benefits for both industries.
  • Editorialpp 6310-6313Gamelas, J. A. F., and Ferraz, E. (2015). "Composite films based on nanocellulose and nanoclay minerals as high strength materials with gas barrier capabilities: Key points and challenges," BioRes. 10(4), 6310-6313.AbstractPDF
    Composites of nanocellulose with layered silicates have recently emerged as a new type of composite materials offering superior strength, as well as thermal and gas barrier properties. These organic-inorganic hybrid composites with a nacre-like structure can be obtained from renewable resources and are environmentally friendly. They can potentially be presented as a serious alternative in the near future to several polymers or other polymer-inorganic composites, for applications in food packaging or electronic devices. The discussion here will be directed to: what are the new opportunities and challenges that arise for these materials aiming at their competition with well-established materials in the market.
  • Editorialpp 6305-6309Hubbe, M. A. (2015)."Oops, I thought that those books had been deacidified," BioRes. 10(4), 6305-6309.AbstractPDF
    Major libraries have been placing increasing reliance upon non-aqueous mass deacidification in an effort to avoid hydrolytic decomposition of the cellulose during storage of bound volumes. Such decomposition is especially a problem when the printing papers used in manufacture of the books have been prepared under acidic conditions, using aluminum sulfate. But there is reason to doubt that the widely used non-aqueous treatments, in which “alkaline reserve” particles are deposited in the void spaces of the paper, can achieve neutralization of acidity throughout the paper structure under the conditions most commonly used for treatment and storage. Anecdotal evidence suggests that alkaline particles such as CaCO3, MgO, Mg(OH)2, or ZnO can be present for long periods of time adjacent to acidic parts of cellulosic fibers without neutralization of the acidity, especially the acidity within the fibers. If these phenomena can be better understood, then there may be an opportunity to use a high-humidity treatment of certain “deacidified” books in order to achieve more pervasive protection against acid-induced degradation.
  • Editorialpp 3815-3817Vaz, S. (2015). "An analytical chemist's view of lignocellulosic biomass," BioRes. 10(3), 3815-3817.AbstractPDF
    Lignocellulosic biomass comprises wood and agricultural residues, which are sources of cellulose, hemicellulose, and lignin (the lignocellulosic fractions), and represents the major biomass source. Each of these types of lignocellulosic fractions has its own particular structural characteristics and chemistry, which can be exploited in chemical analyses. For a general approach, the quality of the biomass used determines the product quality. Therefore, reliable information is required about the chemical composition of the biomass to establish the best use (e.g., most suitable conversion process and its conditions), which will influence harvest and preparation steps. Then, analytical chemistry is required to understand and control these processes, their raw materials, products, and residues.
  • Editorialpp 3811-3814Lindman, B., and Medronho, B. (2015). "The subtleties of dissolution and regeneration of cellulose: Breaking and making hydrogen bonds," BioRes. 10(3), 3811-3814.AbstractPDF
    Cellulose dissolution and regeneration are old topics that have recently gained renewed attention. This is reflected in both applications - earlier and novel - and in scientific controversies. There is a current discussion in the literature on the balance between hydrogen bonding and hydrophobic interactions in controlling the solution behavior of cellulose. Some of the key ideas are recalled.
  • Editorialpp 1986-1987Chi, C., Zhang, S., Zhang, B., Wang, S., Wu, Y., and Gong, Y. (2015)."Professional graduate degree options in China: How to meet future needs for innovation and higher efficiency in the cellulose-based industries," BioRes. 10(2), 1986-1987.AbstractPDF
    The education system for professional graduate students is still incomplete in China nowadays, and this can lead to a lack of fit of their ability with the needs of modern enterprises and society. With the development of technology and the change of social needs, many traditional pulp and paper industries are being forced to transform. Thus, the cultivation of sophisticated versatile talents with preferable engineering and innovative ability is urgent in cellulose-based industries.
  • Editorialpp 10-13Gao, Y., Shen, J., and Li, Q. (2015). "China's high-yield pulp sector and its carbon dioxide emission: Considering the saved standing wood as an increase of carbon storage," BioRes. 10(1), 10-13.AbstractPDF
    The production of high-yield pulp in China has increased significantly in recent years. The well-known advantages of this type of pulp include low production cost, high opacity, and good paper formation. In the context of state-of-the-art technologies, China’s high-yield pulping, which is dominated by the PRC-APMP (preconditioning refiner chemical treatment-alkaline peroxide mechanical pulping) process, has a much higher energy input but a significantly lower wood consumption in comparison with the kraft pulping process. If the saved wood in the forest or plantation is considered as an increment of carbon storage, then the carbon dioxide emission from the production of high-yield pulp can be regarded as much lower than that of kraft pulp.
  • Editorialpp 6-9Hubbe, M. A. (2015). "What next for wood construction/demolition debris?" BioRes. 10(1), 6-9.AbstractPDF
    Residents in localities throughout the world voluntarily participate in the routine recycling of household wastes, such as paper, metals, and plastics containers. But when a house in their neighborhood gets built or torn down, most of the debris – including wood waste – gets landfilled. Such a waste of material suggests that there are opportunities to add value to these under-utilized resources. The great variability, as well as contamination, pose major challenges. It is recommended that reclaimed wood be primarily used in the manufacture of durable goods, and then whatever is left over be used for energy (or heat) generation.
  • Editorialpp 3-5Chi, C., Liu, M., Gong, Y., Zhang, S., and Zhang, B. (2015). "Fractal-based research approach for lignocellulose-to-ethanol conversion," BioRes. 10(1), 3-5.AbstractPDF
    The microstructure of porous lignocellulose has irregularity, which represents self-similarity within the scope of a certain scale, and the conversion process of lignocellulose to bioethanol is complex. The fractal theory appears to be well suited to be an effective tool for describing and studying such irregularity and complexity. Why not introduce the fractal theory as a potentially efficient and effective way to describe the process? Here in this paper, the research development of fractal theory and its potential application in lignocellulose microstructure and enzymatic hydrolysis kinetics are discussed.
  • Editorialpp 1-2McKeand, S. (2015)."The success of tree breeding in the southern US," BioRes. 10(1), 1-2.AbstractPDF
    Nowhere in the world have tree improvement and silviculture had a bigger impact on forest productivity and value to landowners than in the southern US. The economic impact from almost 60 years of tree improvement in the southern United States has been staggering. For example, over 300,000 hectares are planted each year with seedlings from the breeding efforts with loblolly pine (Pinus taeda) by members and staff of the North Carolina State University Cooperative Tree Improvement Program. The present value of continued genetic gains from traditional tree improvement efforts is estimated to be $2.5 billion USD to landowners and citizens in the southern US.
  • Editorialpp 5778-5781Naylor, A. (2014). "Can wood be used as a bio-mechanical substitute for bone during evaluation of surgical machining tools?" BioRes. 9(4), 5778-5781.AbstractPDF
    It is often not possible to machine human or animal tissue, such as bone, in a typical engineering workshop due to the numerous health risks associated. Further to this, currently used synthetic substitutes are also unsuitable for machining. This is mainly due to the aerosolization of harmful particles created during the machining process. It is however essential to thoroughly test and evaluate emerging orthopedic cutting tool designs, particularly when considering that osteonecrosis occurs at as low as 47 °C cutting temperature. It is proposed here that a composite bone model can be constructed using a dense hardwood to represent the hard cortical bone outer shell, and a less dense softwood to represent the spongy cancellous bone interior.
  • Editorialpp 5782-5783Hubbe, M. A. (2014). "Puzzling aspects of the hydrophobic sizing of paper and its inter-fiber bonding ability," BioRes. 9(4), 5782-5783.AbstractPDF
    Internal sizing agents make it possible to prepare water-resistant paper from an aqueous suspension comprising water-loving fibers and an emulsified hydrophobic agent. Why doesn’t the hydrophobic treatment get in the way of inter-fiber bonding? The answer appears to involve the order in which nano-scale events happen during the manufacture of paper. It appears that the inter-fiber bonded areas develop first. Molecular distribution of the hydrophobic agents appears to happen later, especially during the later stages of evaporative drying. The topic seems to be crying out for someone to carry out appropriate experiments to shed more light on the mechanism.
  • Editorialpp 5774-5777Turon, X., Venus, J., Arshadi, M., Koutinas, M., Lin, C. S. K., and Koutinas, A. (2014). "Food waste and byproduct valorization through bio-processing: Opportunities and challenges," BioRes. 9(4), 5774-5777.AbstractPDF
    The bioeconomy era will rely on efficient fractionation of renewable resources via integrated biorefineries. The food supply chain waste, despite its inherent variability, could evolve into an important industrial feedstock on account of its availability, versatility, and sustainability, for the production of bio-based products. Waste streams generated from all stages of the life cycle of food products could be refined into different fractions, which will be either purified to high-value molecules or converted via green chemical and/or biotechnological routes for the production of bio-based products. A working group of the EUBis COST Action TD1203 is taking steps to gather a critical mass of knowledge and expertise to create innovation and technological breakthroughs.
  • Editorialpp 3757-3758Shen, J., Su, W., Yang, D., and Qian, X. (2014). "English-assisted teaching pertaining to pulp and paper in Chinese universities: An undergraduate perspective," BioRes. 9(3), 3757-3758.AbstractPDF
    Currently, about 20 universities in China offer undergraduate courses related to pulp and paper. This large number is congruent with the rapid development of the Chinese pulp and paper industry in the past several decades. In the context of ever-increasing internationalization and global cooperation, English-assisted teaching in Chinese universities has much potential. The wide-spread implementation of English-assisted teaching would promote the career development of students and help foster the advancement of the Chinese pulp and paper industry.
  • Editorialpp 3759-3760Hubbe, M. A. (2014). "Zipping backwards the other way - Yet another unique aspect of cellulose," BioRes. 9(3), 3759-3760.AbstractPDF
    Readers of this journal may be keenly aware of cellulose’s remarkable attributes, such as high stiffness, insolubility in just about everything, resistance to enzymatic attack, dimensional stability in the lengthwise direction, and toughness associated with the alternating crystalline zones and less organized regions. But if you dissolve cellulose and then allow it to recrystallize, the resulting crystals are at the same time radically different, and yet remarkably similar in most respects to the native form. Exactly half of the macromolecules in regenerated cellulose have been reversed 180 degrees in their direction. The behavior of dropped pencils can help explain why this happens.
  • Editorialpp 3755-3756Finkbeiner, M. (2014). "Indirect land use change - Science or mission?," BioRes. 9(3), 3755-3756.AbstractPDF
    The current discussions of indirect land use change (iLUC) and the greenhouse gas (GHG) reduction potential of bioresources have turned into a rather controversial debate. The scientific robustness and consistency of current iLUC models and data are at least unclear. However, representatives of the scientific community still dare to provide straightforward political advice in their papers – way beyond the fact-based ‘proof’ of their data and on a level that is usually not accepted by scientific journals. But the actual task and challenge for the scientific community is to determine the environmental performance of bioresources as objectively and fact-based as possible – with a clear and sober focus on integrity and soundness, not sense of mission.
  • Editorialpp 1824-1827Chen, R., Zhu, S., Chen, C., Cheng, B., Chen, J., and Wu, Y. (2014). "Reviving the acid hydrolysis process of lignocellulosic material in biorefinery," BioRes. 9(2), 1824-1827.AbstractPDF
    The acid hydrolysis of lignocellulosic material (LM) is one of the most widely studied and important subprocess in the LM biorefinery. After acid hydrolysis, LM can be converted to various biofuels, biochemicals, and biomaterials through chemical or biochemical methods. However, conventional LM acid hydrolysis is not regarded as a cost-effective and environmentally-friendly process because it has drawbacks such as difficulties in acid recovery, equipment corrosion, and chemical wastes from the neutralization of acid and the removal of LM degradation products. Use of ionic liquids and solid acids during LM hydrolysis has provided potential technical tools to overcome these problems and has given new life to the LM acid hydrolysis process in the biorefinery. This editorial will discuss the role of the LM acid hydrolysis process in the LM biorefinery, provide an analysis of the conventional LM acid hydrolysis process, and briefly discuss new developments in the LM acid process.
  • Editorialpp 1828-1829Hubbe, M. A. (2014). "Recycling paper recycling," BioRes. 9(2), 1828-1829.AbstractPDF
    What do you do after a product has served its function and is no longer needed? Ideally, you recycle it. What do you do if people have neglected or forgotten so much of what has been learned in recent years about paper recycling? Well, one of the things that someone can do is to write a book. Very little of the contents of such a book may be new. But the book itself can be highly valuable, representing a lot of effort to select and organized material that will be helpful for the current and upcoming generations of papermaking technologists. This editorial describes a new book by Dr. Pratima Bajpai entitled Recycling and Deinking of Recovered Paper. Readers who deal with the recycling of paper will probably want to have a copy of it on a handy shelf.
  • Editorialpp 1-3Mendell, B. C. (2014), "Learning from mistakes in the media to improve the communication of wood bioenergy research," BioRes. 9(1), 1-3.AbstractPDF
    Successful applied research into wood bioenergy requires communication of meaningful insights to inform decision-makers and the general public. Effective communication strategies make such insights accessible. However, recent media reports often exhibit a near total absence of findings from peer-reviewed or quantitative research, highlighting a failure to communicate between applied researchers and reporters. As a result, the general public’s understanding of wood-based bioenergy remains incomplete. At a minimum, researchers can address three common lapses when communicating results of their research related to wood-based energy to increase the public’s access to technical results. First, provide context to give policymakers a sense, on a relative basis, of the importance of a given issue. Second, properly distinguish between “causal” relationships and mere happenstance or correlations. And finally, confirm facts and conclusions. Faulty assertions can cast doubts on the broader work and body of research.
  • Editorialpp 4-7Porankiewicz, B. (2014). "Wood machining investigations: Parameters to consider for thorough experimentation," BioRes. 9(1), 4-7.AbstractPDF
    Investigators wanting to study aspects of wood machining face many challenges. The material under investigation is inherently different with respect to its three major axes, and it responds in various ways to local temperature, moisture, and many other variables. Researchers proposing future research projects in this area thus face a critically important task of selecting parameters to include either as variables or as quantities to hold constant. This editorial outlines key parameters and conditions of wood machining that can be considered, depending on the scope of a project.
  • Editorialpp 4791-4792Hubbe, M. A. (2013). "On Paper - A celebration of two millennia of the work and craft of papermakers," BioRes. 8(4), 4791-4792.AbstractPDF
    Those of us whose lives have been deeply touched by the technology of papermaking – and many others besides – are in for a real treat this coming fall when the book On Paper is scheduled to be published. The author, Nicholas Basbanes, employs an engaging, personalized approach as he brings to life the story of how paper has enabled the progress of civilization throughout two millennia. I first learned about Nick’s grand project, to capture the most intriguing aspects of paper’s story, during a re-broadcast of his hour-long interview that was presented on the CSPAN TV network. His enthusiasm is infectious, and it can be an uplifting experience to have him as a tour-guide to “all things paper”.
  • Editorialpp 4793-4796Wright, R. S., Bond, B. H., and Chen, Z. (2013). "Steam bending of wood; Embellishments to an ancient technique," BioRes. 8(4), 4793-4796.AbstractPDF
    Bending wood dates back to antiquity in the form of baskets from willow branches. Fresh growth willow twigs are readily bent into practically any shape. When wood has been separated from the tree and dried it is more rigid, difficult to bend, and breakable. Bending drier wood with the help of heat and water is centuries old. Fishing hooks, barrel staves, and planks turned into boat hulls are examples. Steamed wood is less rigid, since adding moisture and heat to wood results in plasticization. Steaming at atmospheric pressure is common, wherein diffusion prevails as the predominant mechanism governing moisture movement. Applications using conventional atmospheric steaming can be time consuming, non-uniform, and can result in failures. Vacuum steam technology offers a promising method that utilizes pressure differentials to accelerate the addition of steam to wood due to water vapor bulk flow and subsequently an accelerated temperature rise. More uniform plasticization results in less breakage of the wood.
  • Editorialpp 3177-3180Yang, F., and Shen, J. (2013). "Reconsidering the concept of dry surface treatment of cellulosic paper to produce coated paper products," BioRes. 8(3), 3177-3180.AbstractPDF
    The concept of dry surface treatment for paper coating applications has been available for more than ten years. Different from conventional coating methods such as extrusion coating and suspension coating, dry surface treatment involves a combined process of non-contact deposition of coating materials and surface smoothening of the coated paper. Pronounced features of this concept include avoidance of the need for paper drying and elimination of various negative consequences related to rewetting of the paper with water, etc. However, to date the concept has not been commercialized. Some significant challenges remain. Commercializable technologies for production of size-controllable coating particles and their electrostatic deposition onto paper are the key. Reconsidering this interesting concept may at a minimum shed light on the technological advancement in the area of pulp and paper.
  • Editorialpp 1513-1516Reeb, C. W., Lucia, L. A., and Venditti, R. A. (2013). "Novel screening technique: Integrated combinatorial green chemistry & life cycle analysis (CGC-LCA)," BioRes. 8(2), 1513-1516.AbstractPDF
    The integration of combinatorial green chemistry (CGC), a more benign approach to combinatorial chemistry, with environmental life cycle assessment (LCA) methodologies as an improved process development methodology is discussed. It is expected that the CGC approach will require less labor and result in more globally optimized assay results, leading to more optimized unit process design. The technique utilizes chemical assay stage information to rapidly predict globally optimized process conditions based on techno-economic and LCA indicators. A simplified kraft pulping case study of the application of CGC-LCA is demonstrated herein, but CGC analyses could be applied to virtually any chemical-based project development and implementation project.
  • Editorialpp 1517-1519Li, J., Shen, J., Qian, X., and Ren, W. (2013). "Engineering of cellulosic cigarette paper to reduce the toxic emissions of smoking," BioRes. 8(2), 1517-1519.AbstractPDF
    The prevalence of smoking around the world is well known. During the smoking of cigarettes, various toxins in both the mainstream smoke and sidestream smoke are huge threats to people’s health. In this context, the reduction of toxic emissions is indeed a global concern. Engineering of cigarette-related components, including cigarette paper and tobacco, is important for mitigating the negative impacts of smoking. In the case of cigarette paper, such concepts as decreasing the amount of cellulosic fibers, use of burn-promoting additives, increasing the permeability of paper, and use of catalysts, adsorbents, and/or reductants, have been proposed in the literature. The commercialization of technologies for the engineering of cellulosic paper is expected to result in the production of “healthier” cigarettes. A possible blueprint is to tailor cigarette paper to help smokers to completely quit smoking.
  • Editorialpp 1510-1512Zhu, S., Yu, P., Wang, Q., Cheng, B., Chen, J., and Wu, Y. (2013). "Breaking the barriers of lignocellulosic ethanol production using ionic liquid technology," BioRes. 8(2), 1510-1512.AbstractPDF
    Although the use of ionic liquids (ILs) has provided a potentially effective technical tool to improve the lignocellulosic ethanol production process, the technology still is facing great challenges with respect to its efficiency and economic viability. This editorial gives a systematical analysis of the potential and limitations of lignocellulosic ethanol production using IL technology. The use of ILs establishes a new platform for fractionation of lignocellulosic biomass. The IL pretreatment of lignocellulosic biomass can greatly increase its saccharification rate and the fermentable sugar yield. Use of ILs can also intensify the ethanol fermentation process and improve ethanol separation efficiency from its fermentation broth. However, many technical difficulties still exist in reducing the process costs and alleviating the environmental and ecological effects. More research and financial support are needed to overcome these difficulties.
  • Editorialpp 1508-1509Hubbe, M. A. (2013). "Life in the Forest Canopy," BioRes. 8(2), 1508-1509.AbstractPDF
    Scientists have been devoting increased time and attention to the tops of trees. As made clear by results of their studies, the environment of the forest canopy is teeming with life. Perhaps because the crowns of trees are difficult for people to reach, and due to the micro-climates within them, they hold a rich and diverse collection of life forms. Advances in the use of ropes, ladders, and suspended walkways is now making it possible for humans to be more frequent visitors to these realms.
  • Editorialpp 6-7Chen, Q., Chen, F., and Yan, Y. (2013). "Fluorescent semiconductor nanocrystals, a promising fluorescent anti-counterfeiting material for specialty paper," BioRes. 8(1), 6-7.AbstractPDF
    Fluorescent semiconductor nanocrystals, also called quantum dots (QDs), have unique electronic and optical properties. One of the most useful features of QDs is that whereas their absorption spectra are broad, their emission spectra are very narrow. Different QDs can emit different wavelengths of visible light under UV excitation. QDs as a fluorescent anti-counterfeiting material have been attracting great interest in the application of specialty papers, such as security paper, banknote paper, packaging paper, etc. An anti-counterfeiting technique using QDs is one of the newest achievements in the anti-counterfeiting field. In the long run, research and development in the area of QDs anti-counterfeiting will surely create many fruitful results.
  • Editorialpp 8-11Wang, S., Zhao, X., Xing, G., and Yang, L. (2013). "Large-scale biochar production from crop residue: A new idea and the biogas-energy pyrolysis system," BioRes. 8(1), 8-11.AbstractPDF
    Biochar is an effective means to withdraw carbon dioxide (CO2) from the atmosphere and consequently influence the trend of global climate change. However, there still are substantial knowledge gaps for this idea to be applicable. One big question is how to produce biochar from biomass on a large scale. Our idea is to use biogas produced from agricultural wastes as thermal energy for biochar production from cheap crop residues. A continuous biogas-energy pyrolysis system has been designed and successfully piloted to utilize crop residues for biochar production.
  • Editorialpp 3-5Ayoub, A., Venditti, R. A., Pawlak, J. J., and Massardier, V. (2013). "Combined application of extrusion and irradiation technologies: A strategy oriented for green and cost-effective chemistry," BioRes. 8(1), 3-5.AbstractPDF
    Reactive extrusion is an attractive green route for cost-effective polymer processing, which has the potential to enhance the commercial viability of biomass-derived materials. In reactive extrusion, compatibilizers can be generated in the blend preparation through polymer-polymer grafting reactions using functionalized polymers. One very interesting new green strategy for processing is the use of intense UV-irradiation to create free radicals and controllable, ultra-fast reactions. It is reasonable to expect that the use of extrusion/irradiation green technology will be an important way to improve properties and compatibility of renewable biomass- derived polymers. We believe that in the future, many more cost-effective, sustainable extrusion/irradiation reaction processes will be developed to replace inefficient conventional biomass conversion procedures and stimulate the bioproduct-based industry.
  • Editorialpp 1-2Leung, Y.-F., and Catts, G. (2013). "The joy of bioresources: Sustainable forest-recreation connections," BioRes. 8(1), 1-2.AbstractPDF
    Forests have long-standing relationships with humanity beyond the material aspects. Recreation is an essential human need, and forests possess intrinsic values to support such a need in direct, authentic, and emotional ways. Quality recreation experiences can lead to a greater appreciation of bioresources and deeper support for forest conservation. The forest-recreation connections should be celebrated and sustained in this age of rapid social, environmental, and technological changes.
  • Editorialpp 4495-4498Shen, J., and Qian, X. (2012). "Use of mineral pigments in fabrication of superhydrophobically engineered cellulosic paper," BioRes. 7(4), 4495-4498.AbstractPDF
    Superhydrophobic materials have a lot of interesting potential applications. The self-cleaning property is a unique feature. Rendering the water-loving cellulosic paper superhydrophobic can open the door for value-added applications. Superhydrophobic paper is a fairly new area, and only very limited scientific publications are available in the literature. Among these publications, the topics on the use of mineral pigments in fabrication of superhydrophobic structures account for a large proportion. During the fabrication process, mineral pigments, e.g., silica, precipitated calcium carbonate, and clay, generally need to be hydrophobized, either directly or indirectly. Mineral pigments can be applied to cellulosic paper by surface treatment or wet-end filling, and good dispersabilities of these pigments are always highly demanded. A key mechanistic point is that by tunable particle packing or fabrication, mineral pigments may exhibit surface-roughening effects, which are critical for superhydrophobicity development. The roughening of a hydrophobic surface helps to enhance hydrophobicity. Possible concepts such as nano-structuring or controllable surface patterning of mineral pigments may help to improve superhydrophobicity. Environmental friendliness will also guide the scientific/technical development in this area.
  • Editorialpp 4499-4500Hubbe, M. A. (2012). "The Wood Age - Part of our past, but should we wish for it as our future?" BioRes. 7(4), 4499-4500.AbstractPDF
    A new book by Radkau, Wood. A History, provides telling insight into the cleverness and also into the short-sightedness of humans in their almost uninterrupted dependence on forest resources. This essay touches upon the earliest evidence of prehistoric wood-based technologies – showing examples where humans have tended, in many generations, to exhaust their readily available resources. Beginning in the Industrial Revolution a greatly expanded usage of first coal and the petroleum have tended to take some of the pressure off of the use of wood as a fuel source. But there are early signs that the situation may be changing soon. Large wood-to-liquid-fuel facilities are being talked about. Though the usage of wood for fuel has the potential to be a sustainable enterprise, human history suggests we should exercise caution.
  • Editorialpp 4493-4494Ding, Y., Zhu, S., Yu, P., Cheng, S., and Wu, Y. (2012). "Can lignocellulosic hydrocarbon liquids rival lignocellulose-derived ethanol as a future transport fuel?" BioRes. 7(4), 4493-4494.AbstractPDF
    Although transport fuels are currently obtained mainly from petroleum, alternative fuels derived from lignocellulosic biomass (LB) have drawn much attention in recent years in light of the limited reserves of crude oil and the associated environmental issues. Lignocellulosic ethanol (LE) and lignocellulosic hydrocarbons (LH) are two typical representatives of the LB-derived transport fuels. This editorial systematically compares LE and LB from production to their application in transport fuels. It can be demonstrated that LH has many advantages over LE relative to such uses. However, most recent studies on the production of the LB-derived transport fuels have focused on LE production. Hence, it is strongly recommended that more research should be aimed at developing an efficient and economically viable process for industrial LH production.
  • Editorialpp 4491-4492Zawistoski, P. S. (2012). "Time for a forum on terms used for textile fibers," BioRes. 7(4), 4491-4492.AbstractPDF
    The advances in manufactured fibers and textiles have garnered interest and excitement of textile artists and consumers alike for a myriad of reasons, including health, environmental, and fashion. The chemical and molecular nature of these advances, however leads to confusion and misunderstanding of the new fibers in the materials. This is exacerbated by the current climate of distrust for chemical words and desire for "green" products and the unregulated (mis)information and marketing on the web. Textile artists, consumers, and the clothing and household textile industry need clear names and labels to identify the materials they are using.
  • Editorialpp 2707-2710Shen, J., and Qian, X. (2012). "Addressing the water footprint concept: A demonstrable strategy for papermaking industry," BioRes. 7(3), 2707-2710.AbstractPDF
    Since the introduction of the water footprint concept in 2002, in the context of humankind’s ever-increasing awareness of the valuable global freshwater resources, it has received more and more attention. The application of this relatively new concept has been expected to provide ecological and environmental benefits. For the water-intensive papermaking industry, it seems that water footprint needs to be addressed. The water footprint of cellulosic paper can be divided into three components, including its green water footprint, blue water footprint, and grey water footprint, which may be accounted for by considering the individual contributions of wood or non-wood materials, pulp production processes, effluent discharge to the receiving water bodies, process chemicals and additives, energy consumption, etc. In the literature, the accounting of water footprint during the whole production chain of cellulosic paper is already available, and relevant research findings can provide useful insights into the application of the concept; however, further development of the accounting methodologies is much needed, so that the quantitative and qualitative evaluation of water footprint can be internationally recognized, certified, and standardized. Although there are ongoing or upcoming debates and challenges associated with the concept, its application to papermaking industry may be expected to provide various encouraging possibilities and impacts.
  • Editorialpp 1385-1388Shen, J., and Qian, X. (2012). "Application of fillers in cellulosic paper by surface filling: An interesting alternative or supplement to wet-end addition," BioRes. 7(2), 1385-1388.AbstractPDF
    The application of fillers at the surface of cellulosic paper is an interesting and industrially-commercialized but not very well-known concept, in which the filler particles are essentially added to the voids of the fibrous matrixes. This so-called “surface filling” can be achieved by the use of fillers together with a polymer solution via film press or size press, an approach that is distinct from both wet-end filling and conventional coating of paper. As an easily practicable process, surface filling has some advantages over direct wet-end addition of fillers, such as minimizing the adverse effects of filler addition on paper strength. Efficient surface filling is somewhat dependent on the specific characteristics of both fillers and fibrous matrixes. Surface filling may provide interesting possibilities for the papermaking discipline; for example, it would open the door to maximizing the cost-effectiveness of paper mills, and efficiently adding new functionalities to cellulosic paper. From both practical and fundamental points of view, systematic exploration and understanding of surface filling of cellulosic paper would be of great significance to the papermaking industry.
  • Editorialpp 1383-1384Lucia, L. A. (2012). "Biomass education in the twenty-first century," BioRes. 7(2), 1383-1384.AbstractPDF
    The importance of teaching, for the development of economies, cultures, and the enrichment of people’s lives cannot be overstated. These days biomass and bioenergy teaching has a pivotal role to play in influencing all of the aforementioned areas of life, since fossil fuels are becoming depleted. However, what good is teaching if it cannot be communicated in an intelligible, persuading, and egalitarian manner? A dynamic educational construct between “teacher” and “student” will be the chief mode of promoting knowledge and provoking research for engendering more knowledge. This editorial attempts to show how teaching is a living and symbiotic discipline that we typically take for granted, but once we do it right, we have the power to change the world as we know it. We will briefly explore the example of BioSUCCEED, a platform at NC State University, as a means of communicating knowledge related to biomass and bioenergy.
  • Editorialpp 3-4Zhu, S., Tong, Y., Lv, Y., and Wu, Y. (2012). "Use of ionic liquids to improve the production of hydroxymethylfurfural from renewable biomass," BioRes. 7(1), 3-4.AbstractPDF
    Based on its rich chemistry and broadly available raw material sources, hydroxymethylfurfural (HMF) has become one of the most promising platform compounds for chemicals and biofuels from renewable biomass, and its production has drawn much attention in recent years. However, it is currently still facing significant technical challenges to make it economically feasible in an industrial scale. Use of ionic liquids has provided a potential alternative to address such challenges. Some studies have shown that the use of ionic liquids and suitable catalysts can inhibit side reactions and decrease the formation of by-products, thus improving selectivity and yield during conversion of renewable biomass to HMF. Moreover, the use of ionic liquids also simplifies the HMF production procedures from crude biomass in a one-pot process.
  • Editorialpp 1-2Kumar, S., Bhalla, A., Shende, R. V., and Sani, R. K. (2012). "Decentralized thermophilic biohydrogen: A more efficient and cost-effective process," BioRes. 7(1), 1-2.AbstractPDF
    Nonfood lignocellulosic biomass is an ideal substrate for biohydrogen production. By avoiding pretreatment steps (acid, alkali, or enzymatic), there is potential to make the process economical. Utilization of regional untreated lignocellulosic biomass by cellulolytic and fermentative thermophiles in a consolidated mode using a single reactor is one of the ways to achieve economical and sustainable biohydrogen production. Employing these potential microorganisms along with decentralized biohydrogen energy production will lead us towards regional and national independence having a positive influence on the bioenergy sector.
  • Editorialpp 3621-3622Wang, Q., Ou, R., Shen, X., and Xie, Y. (2011). "Plasticizing cell walls as a strategy to produce wood-plastic composites with high wood content by extrusion processes," BioRes. 6(4), 3621-3622.AbstractPDF
    A challenge in producing wood-plastic composites (WPCs) with a high wood content using extrusion processes is the poor processability, which gives rise to inadequate properties of the resulting WPC. Plasticizing the stiff wood cell walls can be a strategic response to this challenge. Two thoughts are addressed herein on improving the plasticity of wood particle cell walls: use of ionic liquids or use of low molecular weight organic thermal conductors. An ionic liquid can dissolve the cell wall surface and therefore reduce the stiffness of cell wall during an extrusion process. Organic thermal conductors can be incorporated into the cell wall (bulking) to improve the thermal conductivity, thereby sufficiently softening the lignin, a native plasticizer embedded in the cell walls. The potential issues that may arise as a result of these approaches are also presented and discussed.
  • Editorialpp 2288-2290Wang, X., and Sun, R. (2011). "Self-assembled lignocellulose micelles: A new generation of value-added functional nanostructures," BioRes. 6(3), 2288-2290.AbstractPDF
    Lignocellulose-based self-assembled micelles have emerged as a new generation of value-added functional nanostructures that show promise to address issues concerning the depletion of non-renewable resources; also these materials may contribute to the growing enthusiasm of utilizing biomass resources. Lignocellulose micelles can be conveniently prepared by self-assembly of amphiphilic lignocellulose derivatives in aqueous solution. They show great potential for applications in disparate fields, e.g. drug delivery, bioimaging diagnosis, sensing, nanoreacting, and so on. However, as a new research topic, a lot of research work would be needed to find out the critical structural factors that correlate with the formation, stability, morphology, and flexibility of lignocellulose micelles.
  • Editorialpp 927-935Kord, B., and Kord, B. (2011). "Heavy metal levels in pine (Pinus eldarica Medw.) tree barks as indicators of atmospheric pollution," BioRes. 6(2), 927-935.AbstractPDF
    Bio-monitoring of air quality in TehranCity was investigated by analyzing 36 pine tree (Pinus eldarica Medw.) barks. The samples were taken from different locations with different degrees of metal pollution (urban, industrial, highway, and control sites). Then, the concentrations of lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), and chromium (Cr) were measured using a flame atomic absorption spectrophotometer. The results of this study showed that the highest and lowest metal concentrations were found in the heavy traffic sites and the control site, respectively. Lead content was found to be the highest in high traffic density areas. The industrial part of the city was characterized by high Zn, Cr, and Ni contents. Variation in heavy metal concentrations between sites was observed and attributed to differences in traffic density and anthropogenic activities. The research also confirms the suitability of Pinus eldarica Medw barks as a suitable bio-indicator of aerial fallout of heavy metals.
  • Editorialpp 920-926Lundquist, K., and Parkås, J. (2011). "Different types of phenolic units in lignins," BioRes. 6(2), 920-926.AbstractPDF
    The influence of cross-linking and branching on the number of interconnections between lignin units and the number of end groups (phenolic and non-phenolic) in the lignin molecules is discussed. Branching results in an increased number of end groups. It appears from an evaluation of the literature that p-hydroxyphenylpropane units are phenolic to a larger extent than guaiacylpropane units and that such units in turn are phenolic to a larger extent than syringylpropane units. It is proposed that this is related to the relative oxidation potentials of the lignin units. Guaiacylpropane units C-substituted in the 6-position are phenolic to a large extent. Alternative explanations for this are presented.
  • Editorialpp Hill, C. A. S. (2011). "Wood modification: An update," BioRes. 6(2), 918-919.AbstractPDF
    Wood modification is a generic term describing the application of chemical, physical, or biological methods to alter the properties of the material. The aim is to get better performance from the wood, resulting in improvements in dimensional stability, decay resistance, weathering resistance, etc. It is essential that the modified wood is non-toxic in service and that disposal at the end of life does not result in the generation of any toxic residues. Over the past five years there have been significant developments in wood modification technologies, especially in the commercial sector. This technology is here to stay.
  • Editorialpp 1-2Wang, Q., Wu, Y., and Zhu, S. (2011). "Use of ionic liquids for improvement of cellulosic ethanol production," BioRes. 6(1), 1-2.AbstractPDF
    Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.
  • Editorialpp 2024-2025Hubbe, M. A. (2010). "The implementation of findings published in scholarly articles," BioRes. 5(4), 2024-2025.AbstractPDF
    Articles published in scholarly journals, such as this one, tend to be mainly addressed to researchers at universities. Industrial follow-up and implementation of results from a scholarly article appears to be the exception, rather than the rule. Research grant specifications, as well as university policies, favor the generation of new knowledge, rather than the implementation of good ideas. But without patent protection, corporations have low motivation to expend the considerable effort to reduce ideas to practice after they have been openly published. The author speculates that the situation could be much more dynamic if there were a system of priority of implementation. According to such a system, the first company to successfully implement an idea that first appears in a peer-reviewed journal article, as validated by its debut in the marketplace, would have a grace period during which competitors would have to pay them a fee to sell a generic version of the same thing.
  • Editorialpp 2026-2028Shen, J., Song, Z., Qian, X., Liu, W., and Yang, F. (2010). "Fillers and the carbon footprint of papermaking," BioRes. 5(4), 2026-2028.AbstractPDF
    Carbon footprint reduction is a global concern. For the papermaking industry, strategically effective measures of carbon footprint reduction can include many aspects such as energy efficiency improvement, use of renewable carbon-neutral energy, practicing of sustainable forestry, and development of an integrated forest products biorefinery. Filler addition in papermaking can save substantial amounts of pulp fibers, and reduce energy consumption, which can surely contribute to reduction in paper’s carbon footprint. However, the negative effect of filler addition on paper recycling, and the energy consumption associated with the production, processing, and treatment of fillers, will contribute to the carbon footprint. On balance, it can be considered that filler addition in reasonable amounts is likely to lower the paper’s carbon footprint. Certain research work is still needed to better understand the relationship between filler addition and the carbon footprint of papermaking.
  • Editorialpp 1332-1335Nambisan, P. (2010). "Utilization of weeds and agriwaste by popularizing handpapermaking in Kerala, India," BioRes. 5(3), 1332-1335.AbstractPDF
    Kerala in south India grows several cash crops such as banana and pineapple, the crop residues of which are sources of natural fibres that can be used in hand papermaking. Kerala, however, does not have a tradition in hand papermaking. The following is an account of an attempt to popularize the art and craft of hand papermaking among self-help groups as a means of self-employment and waste utilization, using fibres extracted from agriwaste and local plants.
  • Editorialpp 1328-1331Shen, J., Song, Z., Qian, X., Yang, F., and Kong, F. (2010). "Nanofillers for papermaking wet end applications," BioRes. 5(3), 1328-1331.AbstractPDF
    The papermaking industry can benefit a lot from nanotechnology. This versatile technology can also be used in the area of fillers for papermaking wet end applications. In such applications the main technological examples currently available include wet end addition of commercially available nanofillers, formation of nanofiller/fiber or nanofiller/fibril hybrids, development of novel categories of nanofillers such as high aspect ratio nanofillers, and combination of microfillers with nanostructures by specially controlled routes to obtain composite nanofillers. It is worth noting that there are certain challenges associated with nanofillers, such as high cost, difficulty in structure and performance control, poor dispersability and retention, possible severe negative effects on paper strength, possible detrimental interactions between nanofillers with some wet end additives, and the industry-related limitations. However, in the long run, the research and development in the area of nanofillers will surely create many fruitful results.
  • Editorialpp 1326-1327Bozell, J. J. (2010). "An evolution from pretreatment to fractionation will enable successful development of the integrated biorefinery," BioRes. 5(3), 1326-1327.AbstractPDF
    The current state of biorefinery development is focused almost entirely on the production of fuel ethanol. However, an ethanol-centric approach misses the crucial example set by the petrochemical industry. The ability to fractionate a raw material, rather than simply pretreating it, enables the parallel production of low value, high volume fuels and high value, low volume chemicals. By developing analogous fractionation processes for biomass, giving separate process streams of cellulose, hemicellulose and lignin, the biorefining industry will be able to recognize the synergistic advantages of producing both energy and profits.
  • Editorialpp 510-513Shen, J., Song, Z., Qian, X., Liu, W., and Yang, F. (2010). "Filler engineering for papermaking: Comparison with fiber engineering and some important research topics," BioRes. 5(2), 510-513.AbstractPDF
    Fibers and fillers are important raw materials for the preparation of paper products. Similar to fiber engineering, filler engineering for papermaking has become an active research area. There are similarities as well as differences between engineering involving each of these classes of materials. There are differences in such aspects as the nature of materials to be engineered, applicable engineering methods, and engineerablity of the material surfaces. The co-development of fiber engineering and filler engineering can potentially provide many benefits to the papermaking industry. For filler engineering, the relevant research topics broadly can include fibrous filler engineering, hollow/porous filler engineering, acid-stabilization of calcium carbonate fillers, surface encapsulation of naturally occurring polymers or their derivatives, preflocculation, precoagulation, cationic modification, filler/size hybrid formation, organic filler engineering, using combinations of different types of available fillers, multilayer deposition modification, modification with polymer latexes or dispersants, physical modification, mechanical modification, surface functionalization, fines-filler composite/hybrids or fiber-filler composite/ hybrid formation, in-situ polymerization modification, surface grafting, physical treatment in the presence of polymeric additives, filler precipitation, and core-shell composite filler engineering.
  • Editorialpp 507-509Lucia, L. A., and Hubbe, M. A. (2010). "Can lignocellulosic biosynthesis be the key to its economical deconstruction?" BioRes. 5(2), 507-509.AbstractPDF
    It is ironic to think that the venerable pulp and paper industry is now considering ways to degrade cellulose. This notion can be understood as a way that the industry can face a protracted downturn in profitability and ever-mounting socio-economic pressures to enhance the efficiency of biofuels production. Many approaches have been recently taken to deconstruct cellulosic biomass, but this Editorial explores one key that may start to explain the increasing momentum in the biofuels community – biotechnology. Two approaches appear to be possible as scientists search for an effective way to unzip cellulose to its key constituents through the use of biotechnology. On the one hand, there are efforts to re-engineer the chemical composition of the tree, rendering it more digestible by enzymes and decreasing the need for mechanical or chemical pretreatment. On the other hand, what we are learning about lignocellulose biosynthesis can be of potential help in designing more efficient systems to essentially reverse that process.
  • Editorialpp 5-7Shen, J., Song, Z., and Qian, X. (2010)."Possible trends of renewable organic fillers and pigments derived from natural resources for sustainable development of paper industry," BioRes. 5(1), 5-7.AbstractPDF
    The use of traditional inorganic fillers and pigments for both filling and coating applications in papermaking may have certain limitations in such aspects as recyclability and combustibility. Novel renewable organic fillers and pigments derived from natural resources can possibly be completely recyclable, combustible, biodegradable, and environmentally friendly, and they can potentially be used as substitutes for inorganic fillers and pigments to improve the recyclability and other properties of the paper products. Although there are still challenges lying ahead, the strategic significance of the use of renewable organic fillers and pigments for the sustainable development of papermaking industry is an indisputable and demonstrable fact.
  • Editorialpp 1-2Hubbe, M. A., and Buehlmann, U. (2010). "A continuing reverence for wood," BioRes. 5(1), 1-2.AbstractPDF
    Our ancestors knew a great deal about wood. They had to in order to do well in life. Wood has played a dominant role in human infrastructure for many generations, and for most of that time woodcraft has depended on the decentralized knowledge passed down among families and guilds. This editorial, while celebrating the knowledge, skills, and insights of the woodworkers of past generations, also calls for a renewed attention to wood’s unique character, including characteristics that today are too often classified as “defects.” We may need to take lessons from generations past to truly derive the best value from wood resources.
  • Editorialpp 3-4Wang, Q., and Zhu, S. (2010). "Genetically modified lignocellulosic biomass for improvement of ethanol production," BioRes. 5(1), 3-4.AbstractPDF
    Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.
  • Editorialpp 1263-1266Dasmohapatra, S. (2009). "Future marketing drivers for the forest products industry," BioRes. 4(4), 1263-1266.AbstractPDF
    The forest products industry in North America is increasingly losing its share in its domestic markets. The pressure of low cost manufacturing combined with a slowing economy has painfully caused many mills to close and many workers to lose their jobs in recent years. We ask ourselves whether the forest products industry will be able to survive these gloomy times and what, if any are the factors that would drive the future of the forest products industry. Opening our minds to global markets beyond domestic consumption, targeting products towards changing demographic structure and resulting change in consumer tastes, developing and marketing products with the environmental conscious consumer in mind, product innovations, efficient management of the supply chain, and trade practices and policies will be some of the marketing drivers in the forest products industry in the new era.
  • Editorialpp 907-908Treimanis, A. (2009). "Should we be refining first, then discarding fines, then bleaching?" BioRes. 4(3), 907-908.AbstractPDF
    Pulp fibers’ bleaching technology has been developing mainly by applying increasingly intensive delignification in the cooking department and implementation of elemental-chlorine-free chemicals in the bleaching department. The resulting effluents load is still considerable, and the environmental consequences largely depend on the effectiveness of wastewater treatment. Now it is well established that pulp fibers’ surface layers contain comparatively higher amounts of residual lignin, heteroaromatic compounds, and other lignin-like substances. Based on this knowledge an approach is proposed for consideration. As the pulp fibers’ refining process also includes the peeling of fiber wall surface layers, it could be useful to perform such refining first, followed by appropriate screening techniques before the pulp bleaching. The main objection to this approach is related to efficient utilization of the fines, i.e., fractions of the surface layers.
  • Editorialpp 452-455Sun, R.-C. (2009). "Detoxification and separation of lignocellulosic biomass prior to fermentation for bioethanol production by removal of lignin and hemicelluloses" BioRes. 4(2), 452-455.AbstractPDF

    Lignocellulosic materials such as agricultural residues have been recognized as potential sustainable sources of mixed sugars for fermentation to bioethanol. To obtain a high overall ethanol yield and achieve an economically feasible production process, the removal of lignin and hemicelluloses improves the accessibility of cellulosic material to hydrolytic enzymes and avoids the degradation products that are inhibitory to the yeast used in the subsequent fermentation. Technological advances, e.g., environmentally friendly removal of lignin and hemicelluloses from lignocellulosic biomass prior to fermentation of the librated glucose from cellulose into bioethanol, has the potential to provide for sustainable and cost effective production of biofuel.

  • Editorialpp 456-457Cheng, S., and Zhu, S. (2009). "Lignocellulosic feedstock biorefinery - The future of the chemical and energy industry," BioRes. 4(2), 456-457.AbstractPDF
    The sustainable development of the chemical and energy industry is an indispensable component of our sustainable society. However, the traditional chemical and energy industry depends heavily on such non-renewable fossil resources as oil, coal, and natural gas. Its feedstock shortage and the resultant environmental and climatic problems pose a great threat for any type of sustainable development. Lignocellulosic materials are the most abundant renewable resources in the world, and their efficient utilization provides a practical route to address these challenges. The lignocellulosic feedstock bio-refinery is an effective model for the comprehensive utilization of lignocellulosic materials, and it will play vital role in the future development of chemical and energy industry.
  • Editorialpp 1-2Hubbe, M. A. (2009). "'Retro-,' An emerging prefix for future technological development?" BioRes. 4(1), 1-2.AbstractPDF
    It is proposed that the prefix “retro” can serve as an irreverent, but timely buzzword for the development of new technology to meet human needs. Society has carried out experiments at a very large scale for the last century or so to meet our collective needs though the use of fossil-based fuels and synthetic materials. Those experiments have seemed successful in the short term, feeding more of us and supplying a lot of us with rising standards of living. But the experiments often have failed us in terms of sustainability. A health crisis, global warming, and resource depletion are urgent problems caused by careless use of fossil fuels and related synthetic organic chemicals. The prefix “retro,” as in “retrotechology,” signals a disciplined return to a reliance on nature-based products, as well as a respect for the beauty, but also the fragile character of our natural environment.
  • Editorialpp 981-982Lucia, L. A. (2008). "Lignocellulosic biomass: A potential feedstock to replace petroleum," BioRes. 3(4), 981-982.AbstractPDF
    Sustainability considerations for product and energy production in a future US economy can be met with lignocellulosic biomass. The age of petroleum as the key resource to meet the US economy requirements is rapidly dwindling, given the limited resources of petroleum, the growing global population, and concurrent detrimental effects on environmental safety. The use of natural and renewable feedstocks such as trees and switchgrass is becoming more attractive; indeed, lignocellulosic biomass is becoming a logical alternative to petroleum in light of looming oil shortages, increases in oil prices, and environmental sustainability considerations. This editorial aims at providing a broad overview of the consider-ations for replacing the US petroleum economy with one based on lignocellulosic biomass.
  • Editorialpp 666-667Cheng, S., and Zhu, S. (2008). "Use of lignocellulosic materials for a sustainable chemical industry," BioRes. 3(3), 666-667.AbstractPDF
    Traditional chemical industry depends on non-renewable fossil resources and is now facing great challenges. Lignocellulosic materials are the most abundant renewable resources in the world, and their efficient utilization provides a practical route to maintain sustainable development of chemical industry. Modern chemical technology as well as industrial biotechnology will play an important role in comprehensive utilization of lignocellulosic materials in an environmentally friendly way. Bio-refinery is a useful concept in use when considering lignocellulosic materials for a sustainable chemical industry.
  • Editorialpp 295-296Hubbe, M. A. (2008). "Are lignocellulosic resources too valuable to burn?" BioRes. 3(2), 295-296.AbstractPDF
    Lignocellulosic matter often can be counted as a renewable resource, since it is produced by photosynthesis. But there are limits to how much biomass our society can use in a sustainable manner. People can debate whether or not it makes sense to use a substantial portion of lignocellulosic materials as a source of liquid fuel. This essay gives a qualified affirmative answer to the question in its title. However, combustion of lignocellulosic resources can be considered as wasteful and uneconomical, in the long run, if it is inefficient, if it fails to displace the combustion of fossil fuels, or if it displaces a higher-end use, for which there are available customers. In particular, it seems unlikely that combustion of fuels derived from lignocellulosic biomass can, by itself, solve problems that stem from society’s excessive thirst for motor fuels.
  • Editorialpp 1-2Pawlak, J. J. (2008). "A sustainable economy," BioRes. 3(1), 1-2.AbstractPDF
    There exists a direct correlation between improvements in standard of living and the consumption of resources. To be able to maintain the standard of living of a modern developed country, society must adapt to an economy based on sustainable processes, energy, and raw materials. The sustainable economy presents itself as a disruptive technology to the traditional economy, which is based largely on non-renewable resources. The issue seems to be more about when will we switch to a sustainable economy, rather than whether we will switch.
  • Editorialpp 534-535Hubbe, M. A., and Lucia, L. A. (2007). "The 'love-hate' relationship present in lignocellulosic materials," BioRes. 2(4), 534-535.AbstractPDF
    The three main types of chemical components in wood are cellulose, hemicellulose, and lignin. These three components have rather different physical and chemical characteristics. In some respects, the three types of materials can be described as “incompatible.” However, most of the biomass existing on the planet depends on their successful interactions. It can be useful to think of wood as being a natural composite structure. Concepts related to composites also are useful as we envision possible new and improved uses of wood-derived materials.
  • Editorialpp 332-333Hubbe, M. A. (2007). "When is a tree not a resource?" BioRes. 2(3), 332-333.AbstractPDF
    Although this journal mainly considers the study of cellulosic materials as sources of structural wood, fibers, chemicals, energy, and products such as paper, it would be short-sighted to view all trees as existing in order to meet such needs. An individual tree may have multiple roles, from a human perspective. The point of this essay is that different groups of trees ought to be managed in one of four ways – as crops, as natural habitat, as an awe-inspiring heritage, as in the case of national parks, and as dear friends in our yards and along our boulevards.
  • Editorialpp 146-147Hubbe, M. A. (2007). "Appropriate technology in an age of renewables," BioRes. 2(2), 146-147.AbstractPDF
    In this editorial the author proposes that scientists and technologists can play essential roles in the selection of technological alternatives that are appropriate to people’s long-term needs. Lessons learned in the 1970s and 80s, involving the design of simple and reliable mechanical systems for underdeveloped regions, can have relevance today in an increasingly interdependent, crowded, and polluted world. Specialists can help in two ways to promote technologies that make sense, providing for future well-being, and minimizing risks. First, we can exercise personal judgment in our work, as we pursue technological progress. We need to consider whether the likely products of our work are compatible with the world that we want to leave for our grandchildren. Second, we can provide guidance to our fellow citizens, as society grapples with the political and economic choices associated with progress.
  • Editorialpp 1 - 2Hubbe, M. A. (2007). "Incinerate, recycle, or wash and reuse," BioRes. 2(1), 1-2.AbstractPDF
    What is the best way to minimize the environmental impact of using a product such as paper? Three debating teams were formed within a university class. One team advocated increased recycling of paper. Another team pointed to evidence showing reduced environmental impact and lower net CO 2 emissions if the paper is incinerated rather than recycled. A third team advocated the replacement of paper by items such as porcelain plates and video screens, cutting costs and reducing waste by multiple reuse.
  • Editorialpp 172-173Hubbe, M. A. (2006). "From here to sustainability," BioRes. 1(2), 172-173.AbstractPDF

    Many readers and contributors to BioResources are working to develop sustainable technology. Such research attempts to use products of photosynthesis to meet long-term human needs with a minimum of environmental impact. Archeological and historical studies have concluded that the long-term success or failure of various past civilizations has depended, at least in part, on people’s ability to maintain the quality of the resources upon which they depended. Though it is possible for modern societies to learn from such examples, modern societies are interconnected to an unprecedented degree. It is no longer realistic to expect one region to be immune from the effects of environmental mistakes that may happen elsewhere in the world. Research related to renewable, lignocellulosic resources is urgently needed. But in addition to the research, there also needs to be discussion of hard-hitting questions, helping to minimize the chances of technological failure. The next failed civilization may be our own.

  • Editorialpp 174-175Green, C. (2006). "Improved pulp evaluations using a combination of free and restrained drying of handsheets," BioRes. 1(2), 174-175.AbstractPDF

    Pulp evaluations traditionally use plate-dried handsheets. The evalu-ation of pulp could be improved significantly by using side-by-side comparison of handsheets that freely shrink when dried, in addition to handsheets dried in the usual way.

  • Editorialpp 1-2Hubbe, M. A. and Lucia, L. A. (2006). "BioResources - An online scientific journal devoted to lignocellulosic materials for new end uses and new capabilities" BioRes. 1(1), 1-2.AbstractPDF

    In this inaugural issue, the Co-Editors of BioResources would like to welcome you. In your role as a reader, we welcome you to download scholarly articles and opinion pieces; this is an open-access journal, providing a maximum of potential impact. BioResources will deal with new and emerging uses of materials from lignocellulosic sources, including wood and crop residues. Topics will include biofuels, biomass-derived chemical products, papermaking technology, and other new or improved uses of biomaterials. We also would like to welcome you as a prospective author. Our goal is to maintain very high standards of peer-review, as well as providing a mix of scholarly research articles, review articles, and editorials. By using an automated, online system of review and publication, we hope to accelerate scientific discourse. Our hope is to contribute to progress in the direction of a post-petroleum economy, taking advantage of the renewable, biodegradable, and relatively abundant nature of materials from lignocellulosic sources.