NC State

BioResources

BioResources

Peer-reviewed open-access journal devoted to the science and engineering of lignocellulosic materials, chemicals, and their applications for new uses and new capabilities

About the journal

BioResources (ISSN: 1930-2126) An international open-access journal that publishes original research and reviews about lignocellulosic materials, chemicals, & their applications.

  • Editing services included with publication fee
  • Articles published fast after acceptance
  • Impact factor of 1.747 (Journal Citation Reports)
  • Ranked #2 in Wood Science & Technology category (Google Scholar)

NEW! Now accepting nominations for the 2024 BioResources Early Career Investigator Award

See details here for the 22nd International Symposium on Wood, Fiber and Pulping Chemistry

How to Get a New Account at BioResources

View our current issue

Browse Volumes and Issues

Submit a Manuscript

View the FRC Symposium Proceedings

Featured Editorials

  • Editorialpp 2459–2463Azuaje, I., Gonzalez, R., Ekvall, T., Gaudreault, C., Dessbesell, L., Tu, Q., and Lizundia, E. (2025). "Global discussion on life cycle assessment allocation methods for recycled fibers," BioResources 20(2), 2459–2463.AbstractArticlePDF

    On September 3rd, 2024, North Carolina State University, the University of British Columbia, Aalto University, the University of Chile, and the University of the Basque Country organized a global webinar on allocation methods for recycled fibers. The event focused on the challenges and complexities associated with allocation methods for open-loop recycling systems, focusing on bio-based fibers for packaging. The webinar featured three expert presentations by Dr. Tomas Ekvall, Dr. Caroline Gaudreault, and MSc. Ivana Azuaje, each offering valuable insights into the topic.

  • Editorialpp 2464–2467Kitaoka, T. (2025). "Nanocellulose targets regenerative medicine," BioResources 20(2), 2464–2467.AbstractArticlePDF

    The term “nanocellulose” encompasses a wide range of cellulose-derived nanomaterials, which are characterized by their diverse morphologies and chemical structures at the nanometer scale. In recent years, there has been a remarkable increase in the use of nanocellulose in regenerative medicine. Of particular interest is the in vitro culture of pluripotent stem cells, which has led to a growing demand for animal-free media and scaffolds in stem cell culture. Extracellular matrix (ECM) plays a pivotal role in regulating the proliferation and differentiation of stem cells, with fibrous collagen and glycosaminoglycans serving as structural and functional supports. In this context, nanocellulose has garnered significant interest as potential ECM mimetics, due to its rigid fiber form and its regular interfacial structures. The use of natural polysaccharide nanofibers would represent a promising avenue for the functional design of animal-free cell culture scaffolds, with the potential to significantly advance the regulation of stem cell culture in regenerative medicine.

  • Editorialpp 2468–2471Rus, N., Lucherini, A., Jomaas, G., and Derikvand, M. (2025). "Fire safety of timber buildings – The case of photovoltaic systems," BioResources 20(2), 2468–2471.AbstractArticlePDF

    Photovoltaic (PV) systems play an important role in reducing society’s dependence on carbon-based energy sources, and their coupling with timber buildings is an interesting and expected solution for meeting sustainability requirements in the modern built environment. However, both PV systems and timber structures have unique fire safety challenges, and their combination may introduce additional risks. Therefore, relevant fire hazards associated with each of the technologies and their pairing are discussed. The findings highlight the importance of revising fire testing standards and developing tailored safety measures to identify and manage these risks.

  • Editorialpp 2472–2475Fernández-Sosa, E. I., Ehman, N., and Area, M. C. (2025). "Boosting the integrated use of sawmill wastes: Tannin-based extractives opportunities," BioResources 20(2), 2472–2475.AbstractArticlePDF

    In the lignocellulosic biorefinery concept, by-products from sawmills have been redefined and considered as raw materials to produce high-value products. Wood extractives are not an exception despite being found in smaller proportions. The extractive-based components can offer competitive advantages over traditional market products and promote a circular economy. Tannins demonstrate applicability in adhesives, fertilizers, antioxidant food packaging, and water treatment. However, there are still challenges on an industrial scale.

  • Editorialpp 2476–2479Ghahri, S., Yang, L., Du, G., and Park, B.-D. (2025). "Transition from formaldehyde-based wood adhesives to bio-based alternatives," BioResources 20(2), 2476–2479.AbstractArticlePDF

    Bio-based wood adhesives are increasingly receiving greater attention than those of synthetic formaldehyde-based adhesives from petroleum sources in response to climate change. In this respect, this editorial provides an overview on the transition of formaldehyde-based adhesives to bio-based adhesives for the bonding of wood. This transition is underway in academia and industry for practical applications. Bio-based adhesives offer low toxicity, lower greenhouse gas emissions, and increased sustainability with circular economy by promoting renewable and degradable sources, which generates a driving force for the transition.

  • Editorialpp 2480–2482Zhu, S., Zhang, S., Xv, Z., and Zhu, S. (2025). "Phytochemical extraction to improve the economic benefits of biomass processing," BioResources 20(2), 2480–2482.AbstractArticlePDF

    Phytochemicals are non-nutritive plant components having bioactive activities. Compared with synthetic chemicals, phytochemicals have numerous advantages, and they are now widely used in health foods, cosmetics, and pharmaceuticals. Phytochemicals also provide a rich natural resource pool for new health food and medicine development. Because of their wide uses, phytochemicals have high economic value for their development and utilization. Phytochemicals are present in a vast number of plants, and their production has a wide range of feedstock sources. In traditional biomass processing, phytochemicals are often considered as wastes and are not recovered. In order to improve the economic benefits, the extraction of phytochemicals has now become an attractive sub-process during the biomass processing. However, the low content of phytochemicals in plants makes their extraction challenging. Efforts are needed to increase the phytochemical content in plants and develop more efficient extraction and separation processes. This editorial briefly discusses phytochemicals and their extraction to improve the economic benefits of biomass processing.

  • Editorialpp 2483–2486Garbowski, T. (2025). "Exploring the future of novel flute shapes and their mechanical benefits," BioResources 20(2), 2483–2486.AbstractArticlePDF

    Corrugated board is a ubiquitous material, playing a critical role in modern packaging, transportation, and storage industries. While traditional flute shapes like sinusoidal waves dominate production, exploring and implementing novel fluting geometries could significantly enhance the mechanical properties of this material. This editorial discusses the theoretical future of various flute shapes and their potential to improve mechanical performances, such as bending stiffness and load-bearing capacity. Embracing innovative design and production techniques could lead to more sustainable and high-performing usages for corrugated cardboard for diverse applications.

  • Editorialpp 2487–2490Jiang, X. C., and Luo, T. Y. (2025). "Exploring the convergence of tradition and modernity: The educational tourism potential of Suzhou oil-paper umbrella craftsmanship," BioResources 20(2), 2487–2490.AbstractArticlePDF

    Suzhou oil-paper umbrellas, as a significant part of China’s intangible cultural heritage, exemplify the harmonious integration of nature and art through their intricate craftsmanship. These umbrellas are not only functional objects but also cultural symbols, reflecting centuries of traditional skills in bamboo frame making and oil-paper production. However, the preservation of these techniques faces critical challenges, including an aging artisan population, a lack of successors, and insufficient integration of local industries with cultural heritage protection efforts. The current approaches to safeguarding these crafts often focus on superficial aspects, neglecting the core techniques of bamboo processing and paper-making. This editorial considers the cultural value of Suzhou oil-paper umbrella craftsmanship, identifies the challenges in its preservation, and explores revitalization strategies through educational tourism. The research employs a comprehensive analysis of the cultural significance, current preservation efforts, and potential for sustainable development. The main contribution of this study lies in highlighting the potential of educational tourism as a vehicle for cultural heritage conservation and local economic development, providing a framework for the sustainable revitalization of this unique traditional craft.

  • Editorialpp 1-3Shen, J. (2025). "Pulp and Paper: Reflections on faculty and research careers and the journey with BioResources," BioResources 20(1), 1–3.AbstractArticlePDF

    With over 20 years in pulp and paper, my career has been shaped by foundational research and teaching as well as by BioResources, a journal that has significantly supported my work. This editorial reflects on key stages in my academic journey and the pivotal role BioResources has played in advancing my research and connecting the global pulp and paper community.

  • Editorialpp 4-6Burke, C., Lucia, L., Shaw, M., Panek, J., Brogdon, B., and Paulsen, F. (2025). “'A Man for All Seasons': The genius of Peter W. Hart to bridge industry and academia," BioResources 20(1), 4–6.AbstractArticlePDF

    As research scientists go, few rival the volume of work that Dr. Peter Hart produced. His career reflects his willingness to guide budding pulp & paper scientists when he was the Director of Fiber Technology and Innovation at WestRock, as well as an adjunct professor in the Department of Forest Biomaterials at North Carolina State University. He brought his wealth of knowledge to those working in industry and academia; a rarity for anyone with his acumen. His support to graduate research reflects the quality of the publications of researchers such as Dr. Ricardo Santos and Dr. Juliana Jardim; both of whom tackled challenging subjects related to lignin degradation kinetics in kraft pulping and lignin precipitation from kraft black liquor, respectively. In his last academic project, Dr. Hart invested his remaining life to support PhD work to study how lignin-carbohydrate complexes influence lignin precipitation from kraft black liquor. Dr. Hart provided opportunities for young scientists to achieve their goals and provided them with a safe space to learn within research.

  • Editorialpp 7–10Zhang, J. (2025). "Barrier molded fiber products based on recovery and up-cycling of paper and agricultural wastes via a Pickering emulsion approach," BioResources 20(1), 7–10.AbstractArticlePDF

    To reduce plastic pollution, it is of interest to develop biodegradable molded fiber products from recovered cellulose-containing residues as an alternative to single-use plastics. Primary questions to be addressed include how to compound molded fiber products from the recycling of paper or cardboard and agricultural residual wastes via combined vacuum thermo-forming and post-drying or synergistic cold and hot press approaches. In addition, consumers will have high expectations regarding barriers for moisture and grease. It is proposed here to produce uniform barrier molded fiber products via a Pickering emulsion approach with chemically recycled waxes from thermolysis of waste polyolefins. It is further proposed to develop a closed-loop process for recyclable molded products and up-cycling lignocellulosic fibers reinforced biomass-derivable vitrimer bio-composites for sustainable packaging. The development of molded fiber products makes it possible to mitigate the usage of single-use plastics.

  • Editorialpp 11–14Mendieta, C. M., Kruyeniski, J., Vallejos, M. E., and Area, M. C. (2025). "Is it possible to produce sustainable aviation fuels from lignocellulosic biomass waste?," BioResources 20(1), 11–14.AbstractArticlePDF

    Sustainable aviation fuels (SAF) are alternatives to fossil fuels produced from biological or non-fossil feedstocks to reduce greenhouse gas emissions. In the alcohol-to-jet (ATJ) route, alcohol (ethanol, isobutanol, or butanol) dehydration is the key conversion step to create long-chain hydrocarbons. In this context, this Editorial deals with the ethanol-to-ethylene-to-jet route (EEJ) technology and challenges for producing SAF from lignocellulosic biomass waste (LCBW).

  • Editorialpp 15–16Davim, J. P. (2025). "Perceptions of Industry 5.0: Sustainability Perspective," BioResources 20(1), 15–16.AbstractArticlePDF

    Today, Industry 5.0 can be regarded as the latest stage of industrial revolution, where collaboration between humans and smart technologies reaches a new level. This editorial presents insights into Industry 5.0. It explains the concept of Industry 5.0 according to the latest developments, in its three fundamental pillars: human-centric, sustainable, and resilient. Finally, it discusses how Industry 5.0 can contribute to sustainability.

  • Editorialpp 17-20Derikvand, M. (2025). "Project-based learning in timber engineering education: A recent example," BioResources 20(1), 17–20.AbstractArticlePDF

    This opinion paper advocates for project-based learning (PBL) and teaching as a way of preserving active learning in timber engineering education. A recent example of using PBL in a timber engineering course is presented. Its strengths and associated challenges are briefly highlighted, and some suggestions are provided for the adoption of such approaches.

  • Editorialpp 21-24Hubbe, M. A. (2025). "Nanocellulose addition to paper and the ‘Cai Lun Principle’ – Maybe not such a good idea after all," BioResources 20(1), 21–24.AbstractArticlePDF

    Family groups in the ancient cultures of China, Korea, and Japan have toiled for generations in an effort to out-compete their neighbors in the pursuit of handmade paper products having better strength performance, in addition to flatness, uniform appearance, and other desirable attributes. Study of the history of the papermaking craft reveals a remarkable ability of ancient peoples to discover advantageous ways to prepare the cellulosic pulp, to improve its brightness, and to form uniform and strong paper sheets. But though the ancients knew how to “beat” the pulp to improve its bonding ability, there is no evidence of any of them having attempted to greatly “over-beat” some of the fiber, thus making nanocellulose, for potential addition to the fiber mixture. Why not? In this editorial, it is proposed that the ancients may have discovered that adding very highly fibrillated cellulose material to paper was not a good idea.

  • Editorialpp 6961–6963Wang, J. (2024). “Machine learning applications in biomass supply chain management and optimization,” BioResources, 19(4), 6961–6963.AbstractArticlePDF

    Forest and biomass resource utilization for bioenergy and bioproducts is crucial for mitigating climate change and promoting a sustainable bioeconomy. Given that the biomass supply chain is a complex system, one of the most concerning issues is selecting and using appropriate modeling and analytical technologies to optimize the advantages of multi-feedstock biomass supply chains. Machine learning (ML) can enhance biomass supply chain management (BSCM) efficiency and sustainability. It can address the complexities in cultivation, harvesting, preprocessing, storage, transportation, and conversion. ML workflows involve data collection, preprocessing, model training, and optimization, using algorithms for prediction and decision-making. Accurate supply and demand forecasting via ML improves production planning and inventory management. Despite its potential, ML applications in BSCM need to deal with challenges such as data availability and quality, interpretability of models, and their generalization capabilities. Overcoming such challenges requires interdisciplinary efforts in data management and model development to fully leverage ML’s applicability.

     

  • Editorialpp 6964–6966Nikinmaa, M., Pal, L., and Hubbe, M. A. (2024). "Sustainability as a driver in US and EU in paper and nonwoven sectors," BioResources 19(4), 6964–6966.AbstractArticlePDF

    The US and the EU have adopted contrasting pathways in their pursuit of increased sustainability. This editorial highlights such contrasts with respect to paper and nonwovens products. The American way, at least at the federal level, depends on consumer input, which can have an impact on corporate decisions and practices. Progress with respect to sustainability in the European Union has a higher reliance upon regulations. Each approach has merits as well as deficiencies. A regulation-dependent approach sometimes just moves problems to other parts of the world. A consumer-driven approach does not have a good way to deal with a need for systematic change, such as systems to recycle textile and nonwoven materials. It follows that a combined approach, involving both consumer demand and regulations, can be recommended as a most effective path forward. In addition, applications of artificial intelligence have potential to reconcile societal needs with future industrial practices.

  • Editorialpp 6967–6969Tofani, G., Jasiukaitytė-Grojzdek, E., and Likozar, B. (2024). "Lignin data bank: A key to clarifying aromatic structure–performance relationships," BioResources 19(4), 6967–6969.AbstractArticlePDF

    Lignin, a subject of extensive study in academies and industries, is known for its natural abundance, biodegradability, and potential to be transformed into biochemicals and biomaterials. However, the original biomass and extraction treatments, such as kraft pulping and the organosolv process, significantly influence its chemical structure, leading to variations in reactivity. Unfortunately, many scientific publications fail to provide comprehensive lignin property descriptions, which hampers experiment reproducibility and literature comparison. This, in turn, hinders fundamental studies and scientific advancements. This editorial aims to address this issue by advocating for including lignin characteristics in scientific papers when possible.

  • Editorialpp 6970–6974Dalkilic, B., Durmaz, E., Oncul, B., and Candan, Z. (2024). "Nanosensors based on lignocellulosic materials," BioResources 19(4), 6970–6974.AbstractArticlePDF

    In recent years, lignocellulosic materials have become regarded as attractive and noteworthy natural resources owing to their renewability, recyclability, easy processability, abundance, biodegradability, and low cost. The developments in nanotechnology have opened new doors in the field of bio-based nanosensor technology, which is utilized in electronics, optical products, communication, automotive, packaging, tissue engineering, biomedical, textile, etc. This paper mainly focuses on the usage of lignocellulosic materials in nanosensors.

  • Editorialpp 6975–6978Stanciu, M.-C., Bercu, E., and Teaca, C.-A. (2024). "When trees become art – wood carving in Romania," BioResources 19(4), 6975–6978.AbstractArticlePDF

    Trees represent a cherished treasure for each nation. They provide a living, soulful, and earthly material, wood, which most often survives millennia and embellishes our everyday life. Wood can be transformed into valuable pieces of art under skilled hands and tools through carving. In Romania, wood is omnipresent in each milepost of people’s life journey from birth to death. It becomes a true and empathic companion of both happy and sad events. Wood teaches us to focus on the present moment and to let go of stressful thoughts and feelings. It is a real valuable “good” in our life.

  • Editorialpp 6979–6982Hubbe, M. A., and Madappa, K. (2024). "Contemporary papermaking in the tradition of Mahatma Gandhi," BioResources 19(4), 6979–6982.AbstractArticlePDF

    This editorial draws a parallel between important papermaking innovations that were implemented by Mahatma Gandhi and some more recent ventures in papermaking in India. Both of these examples share common themes of fostering the skills of local people, using local resources, and contributing to a better future. A key insight is the scaling of the equipment to be well matched with the size of the production team and enabling a broad range of product grades. The case study considered introduces a modern twist – using papermaking to achieve circularity in the production of textiles. As in the early days of European papermaking, once again waste textile products are serving as the primary source of material.

  • Editorialpp 4040-4042Lan, K. (2024). “Some modeling challenges in dynamic life cycle assessment,” BioResources 19(3), 4040-4042.AbstractArticlePDF

    Life cycle assessment (LCA) has been a mainstream tool to evaluate the environmental impacts of products, services, and systems. Current LCAs inherently rely on the static basis and commonly fail to include temporal considerations. To better assist in the decision-making for sustainable development, dynamic LCA has been initiated to answer more complex and interdisciplinary questions. As in its initial phase, dynamic LCA faces many modeling challenges that at the same time are meaningful research opportunities. In modeling dynamic LCA, there are several key aspects that need more attention for contribution and close collaboration across the first three phases of the LCA framework.

  • Editorialpp 4043-4046Zhang, J., and Pal, L. (2024). “Paper drinking straws coated with cellulose acetate and polyhydroxyalkanoates via an entropy-driven approach and natural colorants as alternatives for plastic drinking straws,” BioResources 19(3), 4043-4046.AbstractArticlePDF

    As a way to reduce microplastics or nano-plastics in the ocean, it is of interest to develop biodegradable paper-based drinking straws to replace  non-degradable plastic drinking straws. Primary questions to be addressed include how to design suitable coatings for paper drinking straws. Such coatings not only need to resist water. In addition, consumers have high expectations for the strength of a drinking straw. It is proposed here to replace non-biodegradable polypropylene, which is presently the main component of straws, with biodegradable and hydrophobic coating components via an entropy-driven approach. It is further proposed to develop colored paper-based drinking straws with cellulose nematic liquid crystal photonic pigments as a way to make the product stand out visibly, while at the same time mediating the usage of toxic chemical pigments.

  • Editorialpp 4047-4049Zhang, S., Zhang, Q., Guo, X., and Zhu, S. (2024). “Kudzu: An invasive plant or a sustainable resource,” BioResources 19(3), 4047-4049.AbstractArticlePDF

    Kudzu (Pueraria lobata (Willd.) Ohwi) is a fast growing leguminous vine plant that has strong reproductive ability and low requirements on its growing conditions. It has been considered an invasive plant in some places because of its aggressive growth, which can destroy the habitat for native plants and animals. However, its strong environmental adaptability makes it easily cultivated as a sustainable resource. Kudzu can also keep soil from washing away and play an important role in ecological protection. Kudzu has had numerous practical uses in our daily lives since ancient times. For example, its root, stem, flower and pod are used in traditional Chinese medicine. Its root is a healthy food. And its leaf is used as fodder and forage for livestock. Moreover, some recent studies on kudzu have found that it is in rich of bioactive ingredients, especially isoflavones, which further broadens its uses in medicine, healthy food, and cosmetics industries. Its high starch and cellulose content makes it a promising feedstock for biofuel production and paper preparation. This editorial will give a brief discussion on kudzu and its comprehensive utilization.

  • Editorialpp 4050-4052Yuan, Z. (2024). “Graphene-cellulose hydrogels: An apt combination,” BioResources 19(3), 4050-4052.AbstractArticlePDF

    Graphene-cellulose hydrogels have been extensively studied in the field of functional hydrogels. This editorial presents an overview of graphene-based and cellulose-derived materials, highlighting the unique characteristics of these two materials and the synergistic advantages achieved by combining them to construct graphene-cellulose composite hydrogels. The aim is to provide novel insights for developing functional cellulose-based hydrogels enabled by carbon nanomaterials.

  • Editorialpp 4053-4055Hubbe, M. A. (2024). “Artists, papermakers, and the future,” BioResources 19(3), 4053-4055.AbstractArticlePDF

    This editorial considers three groups of individuals and how they often find themselves following common ways of thinking. Artists, especially those who become well known, are hard workers and somewhat stubborn. Once they have found a type of paper that works well for them, they tend to develop loyalty to it, regardless of what the label on the ream wrap may say. Papermakers, ancient and modern, likewise have tended to stick with practices that are convenient to them at the moment, whether or not they contribute to archival quality. Fortunately, the transition to alkaline papermaking practices means that modern printing papers tend to last a lot longer. Increasing knowledge of the importance of acid-free paper, as well as the principles of sustainability, are making positive contributions to our ongoing cultural heritage, at least to the part of that heritage that is related to cellulosic materials.

  • Editorialpp 2003-2006Garbowski, T. (2024). “Revolutionizing corrugated board production and optimization with artificial intelligence,” BioResources 19(2), 2003-2006.AbstractArticlePDF

    In the field of corrugated board production and packaging optimization, the advent of Artificial Intelligence (AI) has initiated a paradigm shift. This paper presents a brief analysis of AI’s role in revolutionizing both the production of corrugated board and the design of corrugated packaging. It explores the integration of AI in the homogenization process of complex corrugated board structures into single-layer, shallow shell-based computational models, aiming to improve and accelerate load-bearing calculations. This work presents also how AI’s predictive and analytical capabilities are pivotal in achieving efficiency, sustainability, and cost-effectiveness in the corrugated board industry.

  • Editorialpp 2007-2009Hubbe, M. A., and Savithri, D.  (2024). “Cellulose fibers as a trendsetter for the circular economy that we urgently need,” BioResources 19(2), 2007-2009.AbstractArticlePDF

    Picking up a discarded can or bottle and placing it in a recycling bin may seem like a very small step to take in the direction of making a better world. The scope of benefits that might accrue, by combining many such steps, and making careful plans, was highlighted in a recent Waste to Advanced Resources Matter (WARM) workshop hosted at this university. As shown during the discussions at the workshop, those who are deeply involved with issues of waste management, climate change issues, and care for our planet already know the “broad brush” answers regarding what needs to be done. Now is the time for action in implementing efficient and widespread recovery of valuable materials and energy from what we presently throw away.

  • Editorialpp 2010-2012Wang, Q., and Feng, X. (2024). “High-strength engineered biomaterials study and development needs in China,” BioResources 19(2), 2010-2012.AbstractArticlePDF

    Engineered biomaterials play a crucial role in the construction industry. The study and development of engineered biomaterials with high-strength are necessary to fulfill the construction requirements for medium and high-rise buildings and long-span bridges. Further promoting the localization of high-strength engineered biomaterials is crucial in terms of reducing CO2 emissions, effectively utilizing land resources, and taking into account the unique structure of forest resources in China. The goal of this modification is to satisfy the rising demand for eco-friendly living spaces.

  • Editorialpp 2013-2016Blanco, A. (2024). “The role of Open Science in our research,” BioResources 19(2), 2013-2016.AbstractArticlePDF

    This editorial considers Open Science, what it is, what are its potential benefits, what are the pillars of engagement upon which it rests, and what are some of the main challenges facing its further adoption by research communities. At its core, Open Science involves sharing not only the contents of a traditional research article, but also of any source data and methodologies upon which the reported findings are based. Though some extra work may be required, usually without anyone providing additional resources to do that work, continuous developments in digital technology are making Open Science easier to implement. While not all data is suitable to be shared, Open Science practices are widely supported within the wider research community and funding organizations.

Purpose

Purpose

BioResources provides a venue to promote scientific discourse and foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including crop residues.

Focus

Focus

BioResources publishes articles discussing advances in the science and technology of biomass obtained from wood, crop residues, and other materials containing cellulose, lignin, and related biomaterials. Emphasis is placed on bioproducts, bioenergy, papermaking technology, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.

Format

Format

BioResources is an open-access, web-based journal, with abstracts and articles appearing in hypertext meta-language (HTML) and full articles downloadable for free as Adobe portable document format (PDF) files. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in the journal, and users can use, reuse, and build upon the material in the journal for non-commercial purposes as long as attribution is given when appropriate or necessary.

Co-Editors

The Co-Editors of BioResources are Dr. Lucian A. Lucia and Dr. Martin A. Hubbe, Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Box 8005, Raleigh, NC 27695-8005, USA.

Dr. Lucia
lucia-bioresources@ncsu.edu
(919) 515-7707

Dr. Hubbe
hubbe@ncsu.edu
(919) 513-3022

Twitter Feed - @BioResJournal

Visit us on Twitter
  • 55 years ago

Read More

Searching and Databases

Articles published in BioResources can be found using the following database services (this list is not exhaustive):

  • Web of Science (Thomson Reuters, ISI)
  • SciFinder Scholar (American Chemical Society)
  • Directory of Open Access Journals (Lund University)
  • PaperChem (Elsevier, Engineering Village)
  • Compendex (Elsevier, Engineering Village)
  • Academic Search Complete (EBSCO Industries)
  • CAB Abstracts (EBSCO Industries)
  • Scopus (Elsevier)
  • Google Scholar (scholar.google.com)
  • CrossRef (crossref.org)

Peer-Review Policy

All research articles and scholarly review articles are subject to a peer review process. BioResources offers web-based submission and review of articles.

Sponsor

BioResources, a business unit of North Carolina State University, was started in 2006 with support from the College of Natural Resources and has received in-kind assistance both from the College and from the NC State Natural Resources Foundation.