Editorials
Latest articles
- Editorialpp 6731-6733Xie, M., Chen, J., Zhang, T., and Sun, X. (2023). “Angle-independent cellulosic photonic crystals for smart and sustainable colorimetric sensing,” BioResources 18(4), 6731-6733.AbstractArticlePDF
Cellulose nanocrystals, as well as hydroxypropyl cellulose, can form lyotropic liquid crystals, which can be processed into pigments or glitter products for sustainable coloration. Some stimuli-responsive polymers or nanoparticles are expected to form colorimetric sensors via co-assembly with these cellulosic photonic crystals. The co-assembly behavior of CNCs with polymers is determined by the hydrogen bonds and physical adsorption. Thus, adjusting the molecular chain structure, hydrophilicity, and electrostatic interaction of co-assembled polymers can lead to flexible and tunable colorimetric cellulosic sensors. Despite the advantages of cellulose-based amorphous photonic crystal (APC) pigments or glitters as sustainable and visually captivating sensors, there are still problems in efficient preparation and co-assembly conditions. This editorial will provide a brief discussion of the benefits, applications, and challenges of cellulose-based APCs.
- Editorialpp 6734-6736Liu, Z., Chen, C., Xie, W., and Deng, X. (2023). “Challenges of undergraduate programs in chemical processing engineering of forest products in universities of China,” BioResources 18(4), 6734-6736.AbstractArticlePDF
Seven universities in China currently offer undergraduate programs in chemical processing engineering of forest products (CPEFP), which play a crucial role in training professionals to meet the evolving demands of the forest-based chemical industry. However, these programs in Chinese universities face several challenges that require attention in order to better serve the development of the forest chemical industry.
- Editorialpp 6737-6740Hubbe, M. A. (2023). “Reuse, a neglected “R” word in “Reduce, Reuse, and Recycle”,” BioResources 18(4), 6737-6740.AbstractArticlePDF
This editorial considers hindrances that keep me from making sure that my used wooden furniture items don’t get thrown out at a point where their wooden content still has decades or hundreds of years of potential service left in them. I am a careless and lazy person, and I am not always appreciating the different ways in which other people might be ready to appreciate and utilize my cast-off items. Continued usage of a wooden item can be the ultimate in minimizing environmental impacts. I might envision that the only usage of an old, scuffed wooden dining room set is full restoration. But my niece might need it for her college apartment. A friend of a friend might need it for an informal basement art studio. Alternatively, if the set is really well beyond use in its original form, it could be converted into wood particles for particleboard or incinerated to generate renewable energy. Whether I use eBay, word of mouth, my church’s electronic bulletin board, or just put the item out by the curb on a sunny day, a wooden item of furniture has the potential to continue to provide valuable service for much longer than I might first imagine.
- Editorialpp 1-3Zhang, S., Zhang, Q., and Zhu, S. (2024). “Some issues in implementing forest carbon sink projects to realize carbon emission reduction for climate change mitigation,” BioResources 19(1), 1-3.AbstractArticlePDF
The global climate warming caused by greenhouse gases poses a great threat to human living and biological ecosystems. To mitigate climate change, many measures have been taken to reduce carbon dioxide emissions. Among them, the forest carbon sink (FCS) is considered as one of the most economical and effective carbon sequestration methods to realize carbon emission reductions in next 30 to 50 years. FCS projects are being implemented in many countries to increase their carbon sequestration and thereby to realize carbon emission reductions. However, there are some issues associated with implementation with such policies. Firstly, these projects mainly have focused only on carbon sequestration and have ignored the comprehensive ecological effects to obtain their best economical benefits. Secondly, implementing these projects fails to establish a sustainable and healthy forest industry because they place too much reliance on preferential policies from governments. Finally, the projects lack systematic technological standards and legislation to guarantee their smooth implementation. This editorial briefly discusses these issues for the suitable implementation of the FCS projects.
- Editorialpp 4-5Davim , J. P. (2024). “Sustainable and intelligent manufacturing: Perceptions in line with 2030 agenda of sustainable development,” BioResources 19(1), 4-5.AbstractArticlePDF
This editorial presents insights into sustainable and intelligent manufacturing in line with the 2030 agenda for sustainable development. It begins by framing the concept of sustainable development and its objectives within the scope of the 2030 agenda. Then it explains the concept of sustainable and intelligent manufacturing in agreement with the latest developments in the industry. It finishes by envisioning the integration of Industry 5.0 in the 2030 agenda.
- Editorialpp 6-9Covinich, L. G., and Area, M. C. (2024). “Trends and limitations of lignin as a starting material,” BioResources 19(1), 6-9.AbstractArticlePDF
This editorial envisions a future in which greater value is obtained from technical lignins. The currently available amounts of such lignins are immense, and the costs are often in line with lignin’s fuel value. Key challenges are associated with lignin’s complexity. When envisioning future prospects for lignin, it is important to consider any differences between different types of technical lignin as a starting material.
- Editorialpp 10-12Chen, J., Zhang, X., Chen, Q., and Sun, X. (2024). “Functional conservation and preservation of waterlogged archaeological wood,” BioResources 19(1), 10-12.AbstractArticlePDF
Waterlogged archaeological wood of shipwrecks has been preserved under seawater for centuries, such that microbial erosion has caused severe bacterial degradation and acidification. These wooden cultural relics are of great significance for understanding the shipbuilding technology, trade activities, and environmental ecology of centuries ago. From the perspective of structure and composition, these waterlogged archeological woods have the characteristics of high water content and a large loss of lignin and cellulose, which makes the hull prone to collapse during preservation. Therefore, it is urgent to apply conservation and preservation treatments for deacidification and consolidation. Due to the fragility of wood and the complexity of repair work, the current development of conservation and preservation technology has multiple aims, such as antibacterial, deacidification, and reinforcement effects. In this editorial, the current challenges and conservation treatments with antimicrobial or deacidification utilities will be introduced.
- Editorialpp 13-14Lee, B. J., and Ko, P. (2024). “A way to improve recycling potential of fibers and to achieve circular economy,” BioResources 19(1), 13-14.AbstractArticlePDF
Even though the recycling of paper and paperboard is quite successful when compared to the recycling of other resources, there are many things to improve. Recovering the used paper and paperboard without contamination and sending it back to the papermill that produced it would enhance the recycling potential and efficiency of recovered fiber resources. Close collaboration between a paper and packaging company and a logistics company has made a big improvement in recycling and achieved the circular economy of fiber resources. It is time to find better ways to collaborate, thereby improving our capability to keep our planet green.
- Editorialpp 15-18Zhang, J., De Hoop, C. F., and Wu, Q. (2024). “Environmentally friendly, low thermal conductivity, fire retarding, mechanically robust cellulose nanofibril aerogels and their use for early fire alarm sensors in thermally insulating sustainable building applications,” BioResources 19(1), 15-18.AbstractArticlePDF
As a way to reduce carbon emissions, manufacturing an environmentally friendly and biodegradable cellulose aerogel material with low thermal conductivity, excellent mechanical, and flame retarding property to replace conventional foams is of significant interest in thermally insulating building applications. Primary questions to be addressed include how to design fire retarding and mechanically robust wood derived cellulose nanofibril aerogels as alternatives of expanded polystyrene and rigid polyurethane foams; how to develop aerogel materials in industrial-level manufacturing; and whether it is possible to further develop its early fire alarm sensors with ultra-low temperature sensitive limit and long signal durability by experimental and machine learning artificial intelligence approaches for thermally insulating sustainable building applications.
- Editorialpp 19-22Shen, J., and Hubbe, M. A. (2024). “Why paper technologists use the terms ‘wet end’ and ‘wet end chemistry’,” BioResources 19(1), 19-22.AbstractArticlePDF
Terminology plays a crucial role in shaping our understanding of a field. In this editorial, we focus on the widely used terms “wet end” and “wet end chemistry” within the realm of papermaking. By delving into historical records, our aim is to provide a deeper understanding and a clearer perspective on these terms. It is worth noting that exploring terminology can enhance comprehension and foster a more comprehensive understanding of the subject matter.