NC State
BioResources
  • Editorialpp 981-982Lucia, L. A. (2008). "Lignocellulosic biomass: A potential feedstock to replace petroleum," BioRes. 3(4), 981-982.AbstractPDF
    Sustainability considerations for product and energy production in a future US economy can be met with lignocellulosic biomass. The age of petroleum as the key resource to meet the US economy requirements is rapidly dwindling, given the limited resources of petroleum, the growing global population, and concurrent detrimental effects on environmental safety. The use of natural and renewable feedstocks such as trees and switchgrass is becoming more attractive; indeed, lignocellulosic biomass is becoming a logical alternative to petroleum in light of looming oil shortages, increases in oil prices, and environmental sustainability considerations. This editorial aims at providing a broad overview of the consider-ations for replacing the US petroleum economy with one based on lignocellulosic biomass.
  • Editorialpp 1-2Hubbe, M. A. (2009). "'Retro-,' An emerging prefix for future technological development?" BioRes. 4(1), 1-2.AbstractPDF
    It is proposed that the prefix “retro” can serve as an irreverent, but timely buzzword for the development of new technology to meet human needs. Society has carried out experiments at a very large scale for the last century or so to meet our collective needs though the use of fossil-based fuels and synthetic materials. Those experiments have seemed successful in the short term, feeding more of us and supplying a lot of us with rising standards of living. But the experiments often have failed us in terms of sustainability. A health crisis, global warming, and resource depletion are urgent problems caused by careless use of fossil fuels and related synthetic organic chemicals. The prefix “retro,” as in “retrotechology,” signals a disciplined return to a reliance on nature-based products, as well as a respect for the beauty, but also the fragile character of our natural environment.
  • Editorialpp 456-457Cheng, S., and Zhu, S. (2009). "Lignocellulosic feedstock biorefinery - The future of the chemical and energy industry," BioRes. 4(2), 456-457.AbstractPDF
    The sustainable development of the chemical and energy industry is an indispensable component of our sustainable society. However, the traditional chemical and energy industry depends heavily on such non-renewable fossil resources as oil, coal, and natural gas. Its feedstock shortage and the resultant environmental and climatic problems pose a great threat for any type of sustainable development. Lignocellulosic materials are the most abundant renewable resources in the world, and their efficient utilization provides a practical route to address these challenges. The lignocellulosic feedstock bio-refinery is an effective model for the comprehensive utilization of lignocellulosic materials, and it will play vital role in the future development of chemical and energy industry.
  • Editorialpp 452-455Sun, R.-C. (2009). "Detoxification and separation of lignocellulosic biomass prior to fermentation for bioethanol production by removal of lignin and hemicelluloses" BioRes. 4(2), 452-455.AbstractPDF

    Lignocellulosic materials such as agricultural residues have been recognized as potential sustainable sources of mixed sugars for fermentation to bioethanol. To obtain a high overall ethanol yield and achieve an economically feasible production process, the removal of lignin and hemicelluloses improves the accessibility of cellulosic material to hydrolytic enzymes and avoids the degradation products that are inhibitory to the yeast used in the subsequent fermentation. Technological advances, e.g., environmentally friendly removal of lignin and hemicelluloses from lignocellulosic biomass prior to fermentation of the librated glucose from cellulose into bioethanol, has the potential to provide for sustainable and cost effective production of biofuel.

  • Editorialpp 907-908Treimanis, A. (2009). "Should we be refining first, then discarding fines, then bleaching?" BioRes. 4(3), 907-908.AbstractPDF
    Pulp fibers’ bleaching technology has been developing mainly by applying increasingly intensive delignification in the cooking department and implementation of elemental-chlorine-free chemicals in the bleaching department. The resulting effluents load is still considerable, and the environmental consequences largely depend on the effectiveness of wastewater treatment. Now it is well established that pulp fibers’ surface layers contain comparatively higher amounts of residual lignin, heteroaromatic compounds, and other lignin-like substances. Based on this knowledge an approach is proposed for consideration. As the pulp fibers’ refining process also includes the peeling of fiber wall surface layers, it could be useful to perform such refining first, followed by appropriate screening techniques before the pulp bleaching. The main objection to this approach is related to efficient utilization of the fines, i.e., fractions of the surface layers.
  • Editorialpp 1263-1266Dasmohapatra, S. (2009). "Future marketing drivers for the forest products industry," BioRes. 4(4), 1263-1266.AbstractPDF
    The forest products industry in North America is increasingly losing its share in its domestic markets. The pressure of low cost manufacturing combined with a slowing economy has painfully caused many mills to close and many workers to lose their jobs in recent years. We ask ourselves whether the forest products industry will be able to survive these gloomy times and what, if any are the factors that would drive the future of the forest products industry. Opening our minds to global markets beyond domestic consumption, targeting products towards changing demographic structure and resulting change in consumer tastes, developing and marketing products with the environmental conscious consumer in mind, product innovations, efficient management of the supply chain, and trade practices and policies will be some of the marketing drivers in the forest products industry in the new era.
  • Editorialpp 1-2Hubbe, M. A., and Buehlmann, U. (2010). "A continuing reverence for wood," BioRes. 5(1), 1-2.AbstractPDF
    Our ancestors knew a great deal about wood. They had to in order to do well in life. Wood has played a dominant role in human infrastructure for many generations, and for most of that time woodcraft has depended on the decentralized knowledge passed down among families and guilds. This editorial, while celebrating the knowledge, skills, and insights of the woodworkers of past generations, also calls for a renewed attention to wood’s unique character, including characteristics that today are too often classified as “defects.” We may need to take lessons from generations past to truly derive the best value from wood resources.
  • Editorialpp 3-4Wang, Q., and Zhu, S. (2010). "Genetically modified lignocellulosic biomass for improvement of ethanol production," BioRes. 5(1), 3-4.AbstractPDF
    Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.
  • Editorialpp 5-7Shen, J., Song, Z., and Qian, X. (2010)."Possible trends of renewable organic fillers and pigments derived from natural resources for sustainable development of paper industry," BioRes. 5(1), 5-7.AbstractPDF
    The use of traditional inorganic fillers and pigments for both filling and coating applications in papermaking may have certain limitations in such aspects as recyclability and combustibility. Novel renewable organic fillers and pigments derived from natural resources can possibly be completely recyclable, combustible, biodegradable, and environmentally friendly, and they can potentially be used as substitutes for inorganic fillers and pigments to improve the recyclability and other properties of the paper products. Although there are still challenges lying ahead, the strategic significance of the use of renewable organic fillers and pigments for the sustainable development of papermaking industry is an indisputable and demonstrable fact.
  • Editorialpp 507-509Lucia, L. A., and Hubbe, M. A. (2010). "Can lignocellulosic biosynthesis be the key to its economical deconstruction?" BioRes. 5(2), 507-509.AbstractPDF
    It is ironic to think that the venerable pulp and paper industry is now considering ways to degrade cellulose. This notion can be understood as a way that the industry can face a protracted downturn in profitability and ever-mounting socio-economic pressures to enhance the efficiency of biofuels production. Many approaches have been recently taken to deconstruct cellulosic biomass, but this Editorial explores one key that may start to explain the increasing momentum in the biofuels community – biotechnology. Two approaches appear to be possible as scientists search for an effective way to unzip cellulose to its key constituents through the use of biotechnology. On the one hand, there are efforts to re-engineer the chemical composition of the tree, rendering it more digestible by enzymes and decreasing the need for mechanical or chemical pretreatment. On the other hand, what we are learning about lignocellulose biosynthesis can be of potential help in designing more efficient systems to essentially reverse that process.

@BioResJournal

54 years ago

Read More