NC State
BioResources
  • Researchpp 3779-3791Guo, X., Ekevad, M., Grönlund, A., Marklund, B., and Cao, P. (2014). "Tool wear and machined surface roughness during wood flour/polyethylene composite peripheral up-milling using cemented tungsten carbide tools," BioRes. 9(3), 3779-3791.AbstractArticlePDF

    The effect of sharpness angle on tool wear and the effect of tool wear on machined surface roughness were investigated in wood flour/polyethylene composite (WFPEC) peripheral up-milling using cemented tungsten carbide (TC) tools. It was shown that nose width and edge recession increased with increasing feeding length. During the milling process, the wear of the nose width was smallest for the tool with a sharpness angle of 45°, followed by tools with sharpness angles of 55° and 65°. The wear of edge recession was highest for the tool with a sharpness angle of 45°, followed by tools with sharpness angles of 55° and 65°. The nose width increased with increasing sharpness angle, the edge recession decreased with increasing sharpness angle, and the machined surface roughness increased with increasing sharpness angle after a feeding length of 40 m. The nose width had a positive effect on the machined surface roughness, and the machined surface roughness increased with increasing nose width. The edge recession had little effect on the machined surface roughness. The clearance face roughness of the worn tool increased with increasing sharpness angle. The analysis of the SEM micrographs and EDS of the clearance face of the worn tool showed that the wear mechanisms of the cemented tungsten carbide tool were oxidation and abrasion in the range tested during cutting. Thus, a slight wear of the edge recession is gained in exchange for a lower machined surface roughness by decreasing the sharpness angle.

  • Researchpp 3792-3804Wang, M. Y., Lin, C. P., Li, Y. T., and Ma, H. K. (2014). "Utilization of fire dynamics simulator model to study rice husk gasification in fixed-bed gasifier," BioRes. 9(3), 3792-3804.AbstractArticlePDF

    Computational Fluid Dynamic (CFD) modeling applications of the biomass gasification process help to optimize the gasifier. This study aims to investigate the impact of several physical parameters on the behavior of gasification in a fixed-bed downdraft gasifier. To that end, the study presents a comparison of the results computed using the Fire Dynamics Simulator (FDS) model with experimental results of biomass gasification. Therefore, different sets of simulations and experiments have been performed to examine the effects of initial moisture content, equivalence ratio, high heating value (HHV), and cold gas efficiency (CGE). At the optimum operation, the equivalence rate is 0.3, the HHV can reach 5.71 MJ/m3, and the produced hydrogen concentration is 26.53 vol%. For an initial moisture content of 11.18%, the measured CGE is 66.85%, which is within the range of 65.07% to 70.44%. In general, the initial moisture content of the rice husks is suggested to be below 18%. The overall results indicate that the FDS model can effectively simulate and analyze gasification performance inside the gasifier, and the performance of an improved downdraft gasifier system (IDGS) is improved by higher cold gas efficiency.

  • Researchpp 3805-3824Thilagavathy, P., Santhi, T. (2014). "Studies on the removal of Cu(II) from aqueous solutions using modified Acacia nilotica leaf," BioRes. 9(3), 3805-3824.AbstractArticlePDF

    In this work, sustainable and biodegradable Acacia nilotica leaf (AN) was chemically modified to remove Cu(II) from aqueous solutions, which is considered a versatile approach to clean contaminated aquatic environments. Zinc chloride-modified Acacia nilotica leaf (ZAN) was characterized by scanning electron microscopy (SEM) and other physico-chemical parameters like pHZPC. The aim was to assess the efficiency and mechanism of adsorption on Acacia nilotica via isotherm models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkin-Jura, and Frenkel-Halsey-Hill), kinetic models, and thermodynamic parameters. To optimize the removal efficiency, parameters such as effect of initial concentration, effect of pH, dosage, initial concentration, and contact time were studied by batch and column methods. Desorption studies illustrated that about 73% of the metal ions could be removed using 0.2N HCl. The results of the present investigation indicated that ZAN has a high potential for the removal of Cu(II) from aqueous solutions, and the resultant data can serve as a base line for designing treatment plants on an industrial scale.

  • Researchpp 3825-3834Peng, L., Li, H., Long, X., Chen, K., and Chen, H. (2014). "Facile and efficient conversion of furfuryl alcohol into n-butyl levulinate catalyzed by extremely low acid concentration," BioRes. 9(3), 3825-3834.AbstractArticlePDF

    Alkyl levulinates have been identified as promising chemicals with various industrial applications. Here, a catalytic process for the synthesis in an n-butanol medium of n-butyl levulinate via the alcoholysis of biomass-derived furfuryl alcohol was performed using an extremely low concentration of sulfuric acid (≤ 0.01 M) as the catalyst. A study was conducted that was designed to optimize the process variables, which include acid concentration, reaction temperature, initial substrate concentration, and water content, as a function of time. The optimum conditions resulted in a furfuryl alcohol conversion of nearly 100% and a high n-butyl levulinate yield of up to 97%, which was confirmed by isolated yield. An advantage of this catalyst system is that negligible undesired oligomeric products were formed from the side reaction for the polymerization of furfuryl alcohol, the catalyst cost is low, and less solid waste was discharged from the neutralization of spent acid. Overall, this catalytic strategy is a facile, efficient, and economical approach to the conversion of biomass-derived furfuryl alcohol into alkyl levulinates.

  • Researchpp 3835-3845Salem, M. Z. M., Ali, H. M., and Mansour, M. M. (2014). "Fatty acid methyl esters from air-dried wood, bark, and leaves of Brachychiton diversifolius R. Br: Antibacterial, antifungal, and antioxidant activities," BioRes. 9(3), 3835-3845.AbstractArticlePDF

    The composition of methylated fatty acids from wood, bark, and leaves of Brachychiton diversifolius was analyzed for the first time using gas chromatography (GC). The results indicated that the major methyl ester of fatty acids found in wood, bark, and leaves were: myristic acid (8.32%), palmitic acid (15.66%), and palmitic acid (9.95%), respectively. In accordance to the biological effects of fatty acid fraction, they were moderately effective against Bacillus subtilis and Sarcina lutea, but they did not show any effect against the growth of Staphylococcus aureus and Pectobacterium carotovorum at a concentration of 2000 μg/mL. The maximum percentages of inhibition of fungal mycelial growth against Penicillium selerotigenum (60.35%), Paecilomyces variotii (70.80%), and Aspergillus niger (70.50%) were shown by the fatty acids from leaves, bark, and bark, respectively. The total antioxidant activity (TAA %) of fatty acids from wood, bark, and leaves, were 40±3.13%, 80±5.14%, and 60±4.50%, respectively. In accordance to the results, the different parts of B. diversifolius could provide important components, such as fatty acids with antimicrobial and antioxidant activities for future studies or uses.

  • Researchpp 3846-3856Tu, D., Su, X., Zhang, T., Fan, W., and Zhou, Q. (2014). "Thermo-mechanical densification of Populus tomentosa var. tomentosa with low moisture content," BioRes. 9(3), 3846-3856.AbstractArticlePDF

    This study used thermo-mechanical densification technology to compress low-moisture content (3~5%) rapid-growth Populus tomentosa var. tomentosa trees to produce specimens with a low-compression ratio (small volume loss) and a uniform density profile and desirable properties. Furthermore, the densified specimens were subjected to post-heat treatment at 180, 190, and 200 °C for 2, 3, and 4 h, respectively. Microscopic examination was performed to observe the changes that occurred in the wood vessels after densification. To determine the influence of post-heat treatment on the set recovery, the specimens were subjected to eight cycles of soaking and drying in 20 °C water and two cycles in boiling water. The density profile tendencies of the densified specimens were in accord with undensified specimens. Microscopic observation revealed that the deformations present in the densified wood resulted from the viscous buckling of cell walls without fracture. The volume of the void areas in the specimens decreased uniformly. Post-heat treatment can decrease compressive deformation, especially when applied at 200 °C for 4 h. After two boiling water cycles of soaking and drying, the densified wood still had a certain set recovery. Therefore, densified wood should be used sparingly in high temperature and high humidity environments.

  • Researchpp 3857-3868Wu, P., Ma, Y., Chen, Y., Zhang, Y., and Wang, H. (2014). "Vibration-assisted compaction of biomass," BioRes. 9(3), 3857-3868.AbstractArticlePDF

    The biomass extrusion process for making biomass briquettes or logs normally requires large amounts of energy to overcome the springback of the material and friction with the die surface. Also, the products readily expand and disintegrate because of the retention of internal stresses. In this study, tests on vibration-assisted compaction of biomass were performed as a method to reduce the energy requirement and to improve product quality. An experimental set-up was designed and manufactured by which vibration-assisted compaction was exerted on a die surface. Tests on compaction to form upgraded biomass logs with and without the assistance of vibration were conducted and compared. The results showed that the vibration applied on a die surface can reduce the compression energy requirements and improve product quality.

  • Researchpp 3869-3882Wang, Z., Wang, Z., Wang, B. J., Wang, Y., Liu, B., Rao, X., Wei, P., and Yang. Y. (2014). "Dynamic testing and evaluation of modulus of elasticity (MOE) of SPF dimensional lumber," BioRes 9(3), 3869-3882. AbstractArticlePDF

    The key objective of this work was to develop a cost-effective and reliable non-destructive testing (NDT) method to measure lumber modulus of elasticity (MOE). Test samples comprised 300 pieces of randomly selected imported Canadian 2”×6” SPF (Spruce – lodgepole Pine – alpine Fir) dimensional lumber. This work first adopted a modal test to achieve a free suspension for a subsequent vibration test. Then, the first-order natural frequency of 300 SPF dimensional lumber specimens was measured by the transient excitation frequency method, based on which MOE was then calculated. The results were also validated by a stress wave method using a Hitman tool. The measured lumber MOE data were further fitted using a Weibull distribution. The results showed that the MOE of SPF dimensional lumber followed either a three-parameter Weibull distribution or a normal distribution. It was estimated that the probability that the MOE of this SPF dimensional lumber was less than 8,000 MPa was about 13.8% and 13.6%, respectively, using the above two distributions.

  • Researchpp 3883-3900Togay, A., and Ergin, E. (2014). "Determination of some physical attributes for wooden construction elements strengthened with woven wire fiberglass," BioRes. 9(3), 3883-3900.AbstractArticlePDF

    This study designed composite wooden construction elements strengthened with woven wire fiberglass netting and determined the technical attributes. Scots pine (Pinus sylvestris L.) was used in wooden layers, and woven wire fiberglass netting was used in intermediate layers. Layers were pressed with polyvinyl acetate (PVAc) D3 and Desmodur-VTKA adhesives to form 7 solid 13-layer laminated composite specimens. Experiments on 95 specimens determined density, bonding strength, bending resistance, and compression strength; solid and solid laminated wooden materials were tested and compared. BS EN 204 and BS EN 205 standards were complied with for bonding strength tests, TS 5497 EN 408 was used for densities, and TS 549 EN 408 was followed for bending resistance and compressive strength. Most factors, except for intermediate layer material in compressive strength and bending resistance tests perpendicular to the glue line, did not cause significant differences. Variables (adhesive, intermediate layer material) used for determining bending strength parallel to the glue line were effective. Polyurethane adhesive increased resistance to bending parallel to the glue line. These composite wooden construction elements supported with woven wire fiberglass netting could be advantageous for applications that require high bending resistance perpendicular to the glue line. However, these composites do not hold a compressive strength advantage.

  • Researchpp 3909-3918Ma, M. G., Deng, F., Yao, K., and, Tian, C. H. (2014). "Microwave-assisted synthesis and characterization of CaCO3 particles-filled wood powder nanocomposites," BioRes. 9(3), 3909-3918.AbstractArticlePDF

    The purpose of this study was to develop a rapid and green method for the synthesis of biomass-based materials. A microwave-assisted method was used for the preparation of CaCO3 particles-filled wood powder nanocomposites, which involve natural cellulosic materials, CaCO3, and microwave heating. Dewaxed wood powder was pretreated in the NaOH/urea solution. The urea acts as part of the CO32- source and provides a basic condition for the synthesis of CaCO3. The influences of reaction parameters such as the heating time and the addition of (NH4)2SO4 on the products were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The experimental results demonstrated that the heating time had an effect on the crystallinity and morphology of the nanocomposites. In addition, the presence of (NH4)2SO4 played an important role in the morphology and dispersion of CaCO3 in the nanocomposites.

@BioResJournal

55 years ago

Read More