Research Articles
Latest articles
- Researchpp 3992-4003Jelonek, T., Pazdrowski, W., Tomczak, A., and Arasimowicz-Jelonek, M. (2017). "Lignification markers of the tracheid walls of Scots pine (Pinus sylvestris (L.)) in various forms of dead bark," BioRes. 12(2), 3992-4003.AbstractArticlePDFThis study attempted to define the shaping of the quotient of fresh-needled twig mass and fresh conifer needle mass to the lignin content (MFT/LC) in the tracheid walls of the circumferential zone of trunks (MFN/LC) of pines with various forms of dead bark, which were called lignification markers. In the experiment, the researched trees had varying forms of dead bark, including ropy bark (G), scaly bark (L), and shell-type bark (M). The research material came from pine timber forests aged between 89 years to 91 years, located in Northern Poland. A tree tissue chemical analysis encompassed a zone of mature sapwood, i.e., the last ten annual growth rings of diameter increment located at the height of 1.30 m (diameter at breast height-DBH). The acquired results pointed to the fact that pines with dead bark in the ropy form possessed statistically higher values of the analyzed markers (MFT/LC and MFN/LC) than the trees with scaly and shell-type bark. The variances ascertained in the course of the experiments of both markers in the Scots pine (Pinus sylvestris (L.)) are possibly connected to the physiological, physical, and structural conditioning of water transportation, with mineral salts in the stem of the trees.
- Researchpp 4004-4012Büyüksarı, Ü., As, N., and Dündar, T. (2017). "Mechanical properties of earlywood and latewood sections of Scots pine wood," BioRes. 12(2), 4004-4012.AbstractArticlePDFThe aim of this study was to determine the mechanical properties of earlywood (EW) and latewood (LW) sections of Scots pine (Pinus sylvestris L.) wood, and determine the relationship between calculated and measured values. The bending strength, modulus of elasticity in bending, and the tensile strength of EW and LW sections were determined. The mechanical properties were calculated using EW and LW mechanical properties and LW proportion. Also, mechanical properties were determined in standard size samples and compared to the calculated properties. In earlywood and latewood sections, the bending strength was 37.3 MPa and 93.9 MPa, the modulus of elasticity in bending was 1557.6 MPa and 3600.4 MPa, and the tensile strength was 58.6 MPa and 189.6 MPa, respectively. The results showed that the LW section had higher mechanical properties than those of the EW section for all of the measured mechanical properties. The calculated bending strength, modulus of elasticity, and tensile strength values were 53.3 MPa, 2133.7 MPa, and 95.5 MPa, respectively. The calculated bending strength and modulus of elasticity values were lower compared to the measured values, while the calculated tensile strength values were higher than that of the measured values.
- Researchpp 4013-4030Bernal, O. I., Pawlak, J. J., and Flickinger, M. C. (2017). "Microbial paper: Cellulose fiber-based photo-absorber producing hydrogen gas from acetate using dry-stabilized Rhodopseudomonas palustris," BioRes. 12(2), 4013-4030.AbstractArticlePDFThe microstructure and reactivity of a novel nonwoven cellulose fiber cellular biocomposite (microbial paper) was studied relative to long-term stabilization of potentially any microorganism. Cells were incorporated during the papermaking process as an integral component of a highly porous cellular biocomposite that can be dry stabilized. Hydrogen gas production from acetate via the activity of the nitrogenases in Rhodopseudomonas palustris CGA009, entrapped at a very high concentration, in hand-made microbial paper was sustained for > 1000 h at a rate of 4.0 ± 0.28 mmol H2/m2 h-1 following rehydration. This rate is 2x and 10x greater than previously reported H2 production rates by Rps. palustris latex coatings that were dried on polyester and non-dried formulations applied to the surface of paper, respectively. By vacuum-dewatering and controlled drying steps to the microbial papermaking process and incorporating blends of microfibrillar (MFC), softwood (SW), and hardwood (HW) cellulose fibers, microbial paper films were fabricated that produced H2 gas at 3.94 ± 1.07 mmol H2/m2 h-1 and retain up to 60 mg/m-2 dry cell weight (DCW) of Rps. palustris. The MFC content appears to determine the final cell load and may affect gas/moisture mass transfer properties of the biocomposite.
- Researchpp 4031-4048Kuparinen, K., and Vakkilainen, E. (2017). "Green pulp mill: Renewable alternatives to fossil fuels in lime kiln operations," BioRes. 12(2), 4031-4048.AbstractArticlePDF
Pulp mills are making increasing efforts to reduce fossil fuel use and carbon dioxide emissions. Lime kilns, which are typically fired with fuel oil or natural gas, use the most fossil fuel in modern pulp mills. A modern kraft pulp mill can be fossil fuel-free during normal operation if fossil-based lime kiln fuels are substituted with renewable alternatives. This study compared the production and use of various renewable fuels, namely, hydrogen, producer gas, torrefied biomass, lignin, and pulverized biomass, in lime kiln operations in a 1.5 Mt/a kraft pulp mill in South America to define the techno-economic optimum for the fossil fuel-free operation of the pulp mill. The attractiveness of each of the concepts was dependent on local conditions and especially the prices of fossil fuels and electricity. The results showed, however, that feasible options exist for the replacement of fossil fuels in lime kiln operations.
- Researchpp 4049-4061Liang, C., Hu, Y., Guo, L., Wu, L., and Zhang, W. (2017). "Kinetic study of acid hydrolysis of corncobs to levulinic acid," BioRes. 12(2), 4049-4061.AbstractArticlePDF
Levulinic acid (LA) is an important platform compound that can be obtained from biomass resources. Using corncobs as the raw material that had already removed the hemicellulose, this work studied the relevant hydrolysis kinetics. The kinetic experiments were performed at various temperatures in the range of 150 °C to 180 °C and sulfuric acid concentrations between 0.2 mol/L and 0.8 mol/L in a reactor designed by the authors. The highest yield of LA was obtained at 150 °C and 0.8 mol/L H2SO4 at 58.0 mol%. A new simple kinetic model that consists of four first-order reactions was proposed; the model assumes that humins can be only converted from 5-hydroxymethylfurfural (5-HMF). A modified parameter fitting method that contained equality constraints and a weighted objective function was applied in this study. The kinetic model was in excellent agreement with the experimental data.
- Researchpp 4062-4077Wang, H., Zhang, X., Wei, Y., Zhang, A., Liu, C., and Sun, R. (2017). "Homogeneous esterification mechanism of bagasse modified with phthalic anhydride in ionic liquid, Part 3: Structural transformation of lignins," BioRes. 12(2), 4062-4077.AbstractArticlePDF
The phthalation of bagasse was investigated comparatively with the three main isolated components in 1-allyl-3-methylidazium chloride (AmimCl) to reveal the reaction behavior of bagasse. In the first two parts, the detailed changes of cellulosic and hemicellulosic components in bagasse were elucidated during phthalation. In Part 3, the phthalation of lignins was performed in AmimCl with various ratios of phthalic anhydride/lignins from 10 to 50 mmol/g. The phthalation degree ranged from 41.1% to 68.8% for the phthalated lignins. The aliphatic hydroxyls of lignins were more easily phthalated than the phenolic hydroxyls as revealed by 31P nuclear magnetic resonance (NMR) analysis. Fourier transform infrared spectroscopy (FT-IR) and two dimensional (2D) heteronuclear single quantum correlation (HSQC) confirmed the attachment of phthaloyl group onto lignins. Severe degradation of lignin macromolecules was found at high ratios of phthalic anhydride/lignins (30 to 50 mmol/g) by gel permeation chromatography (GPC) analysis. These results provide a detailed understanding of reaction behaviors of lignins during bagasse phthalation, which are beneficial to prepare composites based on phthalated lignocellulose with better properties.
- Researchpp 4078-4092Nasser, R. A., Mansour, M. M. A., Salem, M. Z. M., Ali, H. M., and Aref, I. M. (2017). "Mold invasion on the surface of wood/polypropylene composites produced from aqueous pretreated wood particles, Part 1: Date palm midrib," BioRes. 12(2), 4078-4092.AbstractArticlePDF
The effect of particle pretreatments on the biodeterioration of wood-plastic composites (WPCs) was investigated. WPCs made from untreated and pretreated frond midrib particles of date palm were used. Before the addition of a coupling agent, the wood particles were pretreated or extracted with either cold or hot water and mixed with polypropylene to produce panels, which were then superficially inoculated with an ascomycete’s fungus Trichoderma harzianum T6776. The WPC surfaces were studied using scanning electron microscopy (SEM) and electron dispersive X-ray spectroscopy (EDX) measurements. In comparison with the control, an intensive growth of T. harzianum hyphae was found over the WPC surface manufactured from untreated date palm midrib particles with the colonies clearly visible. The pretreatments of date palm particles reduced the growth of T. harzianum in comparison with the control and untreated particles. The results suggested that particle pretreatments could be a suitable way to limit the growth of molds over WPC surfaces made from date palm midrib.
- Researchpp 4093-4110Amini, E., Tajvidi, M., Gardner, D. J., and Bousfield, D. W. (2017). "Utilization of cellulose nanofibrils as a binder for particleboard manufacture," BioRes. 12(2), 4093-4110.AbstractArticlePDF
Cellulose nanofibrils (CNF) were investigated as a binder in the formulation of particleboard (PB) panels. The panels were produced in four different groups of target densities with varying amounts of CNF binder. The produced panels were then tested to determine the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), water absorption (WA), and thickness swelling (TS) properties. Density gradients through the thickness of the panels were evaluated using an X-ray density profiler. The effect of drying on the strength development and adhesion between CNF and wood particles (WP) was investigated, and the effect of surface roughness on the wood-CNF bonding strength was evaluated through lap shear testing and scanning electron microscopy. It was found that at lower panel densities, the produced samples met the minimum standard values recommended for particleboard panels. Medium-density panels met the standard levels for IB, but they did not reach the recommended values for MOR and MOE. The possible bonding mechanism and panel formation process are discussed in light of microscopic observations and the results of lap shear tests were presented.
- Researchpp 4111-4122Ooi, Z. X., Chan, K. L., Ewe, C. Y., Muniyadi, M., Teoh, Y. P., and Ismail, H. (2017). "Evaluation of water affinity and soil burial degradation of thermoplastic film derived from oil palm ash-filled polyvinyl alcohol," BioRes. 12(2), 4111-4122.AbstractArticlePDFOil palm ash (OPA) produced through the incineration process were used as a blending material with polyvinyl alcohol (PVOH) to produce a thermoplastic film. Prior to blending, the oil palm ash was characterized using a scanning electron microscope (SEM), Fourier transform infrared spectroscopy, and x-ray diffraction (XRD). The OPA was successfully blended with polyvinyl alcohol to produce plastic films at various ratios of oil palm ash. The properties of these blended polyvinyl alcohol/oil palm ash films were then characterized using SEM, water absorption, and soil burial tests. The water absorption decreased as the content of the oil palm ash increased. Blended polyvinyl alcohol/oil palm ash films showed a better degradation when the concentration of oil palm ash was increased.
- Researchpp 4123-4145Nnaji, C. C., and Emefu, S. C. (2017). "Effect of particle size on the sorption of lead from water by different species of sawdust: Equilibrium and kinetic study," BioRes. 12(2), 4123-4145.AbstractArticlePDFBoth the effect of particle size and initial concentration on the adsorption of lead by sawdust of two timber species were investigated using batch experimental equilibrium and kinetic studies. A 100% lead removal efficiency was recorded for the optimum particle size of 1.18 mm for Pycnanthus angolensis and 0.85 mm for Khaya ivorensis at an initial lead concentration of 10 mg/L. Freundlich isotherm (0.83 ≤ R2 ≤ 0.96 for Khaya ivorensis and 0.94 ≤ R2 ≤ 1.0 for Pycnanthus angolensis) performed better than Langmuir and Temkin isotherms. The Dubinin-Radushkevich isotherm was used to ascertain the sorption mechanism. Mean sorption energy (12.48 kJ/mol for Pycnanthus angolensis and 13.42 kJ/mol for Khaya ivorensis) indicated that adsorption was by ion exchange. The pseudo-first order kinetic model (0.96 ≤ R2 ≤ 1.0 for Khaya ivorensis and 0.90 ≤ R2 ≤ 1.0 Pycnanthus angolensis) performed better than others with respect to R2 values, while the intraparticle diffusion model performed better than the other kinetic models with respect to absolute mean error (AME).