Research Articles
Latest articles
- Researchpp 5057-5070Weng, J., Qiu, R., and Chen, L. (2017). "Composite paper sheet containing TiO2-diatomite for removing phenol in aqueous solution," BioRes. 12(3), 5057-5070.AbstractArticlePDFComposite paper sheet containing titanium dioxide and diatomite (TiDI) was prepared via a papermaking technique. The composite sheet was applied to remove phenol from aqueous solution. The composite sheet with a 2:1 mass ratio of cellulosic-fiber to TiDI removed phenol more effectively under UV irradiation than the composite paper sheet that utilized titanium dioxide (TiO2) alone. Composite paper sheets that contained TiDI with a TiO2/diatomite mass ratio of 1:2 removed phenol most effectively. The results showed that the TiDI composite paper could serve as a functional material to photodegrade phenol from aqueous solution under UV irradiation effectively.
- Researchpp 5071-5085Jin, X. B., Jiang, Z. H., Wen, X. W., Zhang, R., and Qin, D. C. (2017). "Flame retardant properties of laminated bamboo lumber treated with monoammonium phosphate (MAP) and boric acid/borax (SBX) compounds," BioRes. 12(3), 5071-5085.AbstractArticlePDF
This study aimed to improve the flame-retardant properties of laminated bamboo lumber (LBL) using phosphorus-nitrogen-boron flame retardants (FRs). The combination of a 7:3 ratio of monoammonium phosphate (MAP) and boric acid/borax compounds (SBX), and 74.32 kg/m3 of FRs (10.3% weight gain), exhibited enhanced fireproofing performance for LBL materials. A commercial flame retardant (guanylurea phosphate) (GUP) was systematically studied as a comparison. A cone calorimeter and a thermal analyzer were used to characterize the combustion behavior and thermal stability, respectively. The flame retardants morphology in bamboo cell cavities was investigated using scanning electron microscopy (SEM) and an energy dispersive X-ray analysis (EDXA). The results showed that at a heat flux of 50 kW/m2, the heat release rate and the total heat release of LBL samples treated with MAP-SBX flame retardants decreased more considerably than that of the untreated samples. The use of MAP-SBX not only promoted carbonization of LBL greatly but also indicated a good performance of smoke and combustion suppression as well as for the GUP. Flame retardants were confirmed to penetrate into the cell cavities of the bamboo using SEM and EDXA.
- Researchpp 5086-5101Meekum, U., and Kingchang, P. (2017). "Peroxide/silane crosslinked poly(lactic acid) hybrid biocomposite reinforced with empty fruit bunch and cotton fibers for hot-fill food packaging," BioRes. 12(3), 5086-5101.AbstractArticlePDF
A biocomposite manufactured from peroxide/silane crosslinked poly(lactic acid) reinforced with hybridized empty fruit bunch (EFB) oil palm and cotton fibers was investigated. Optimization of dicumyl peroxide (DCP) and the vinyltrimethoxysilane (VTMS) crosslink system by using the 2k factorial design of experiment (DOE), with k = 2 was preliminary employed. There was no significant effect of the designed parameters, DCP(A) and VTMS(B), on the properties of the biocomposite. Concerning the environmental and economical aspects, the DPC and VTMS ratio was important. A crosslink agent content from 0.5 phr of DCP with 1 phr to 2 phr VTMS was recommended to manufacture a biocomposite with high heat distortion temperature (HDT) at above 100 °C and reasonable flow and mechanical properties. Also, the direct addition of the DCP/VTMS crosslink agent onto the PLA/rubber compound mixture and fed into a twin screw extruder for producing crosslinked PLA/EFB/cotton hybrid biocomposites were the optimized mixing methods. Shorter process line/time, ease of process steps, and reasonable engineering properties were justified. A HDT above 100 °C with a better toughness property of the biocomposite material was obtained. The PLA/PLA and PLA/ENR crosslinks via silane/moisture condensation during the sauna incubation was the prime explanation.
- Researchpp 5102-5117Zhou, C., Dong, A., Wang, Q., Yu, Y., Fan, X., Cao, Y., and Li, T. (2017). "Effect of common metal ions and anions on laccase catalysis of guaiacol and lignocellulosic fiber," BioRes. 12(3), 5102-5117.AbstractArticlePDF
The effects of 12 common metal ionic compounds on the laccase catalytic activity in reactions using guaiacol as the substrate was determined using spectrophotometry. Furthermore, the influence of several metal ionic compounds on the generation of reactive oxygen species (ROS) by oxidation of lignin in jute fiber under laccase catalysis was studied by electron paramagnetic resonance (EPR) spectroscopy using N-tert-butyl-alpha-phenylnitrone (PBN) as the spin-trapping agent. Common metal cations, such as K+, Na+, Mg2+, Ca2+, and Cu2+ and the anion SO42- had almost no effect on laccase activity during the initial stage of the catalytic reactions. High concentrations of the Mn2+ ion exhibited weak inhibition of laccase; Ag+ and NO3- showed a moderate inhibitory effect on laccase activity during the initial stage of the catalytic reactions. Fe2+ had no direct effect on the binding of laccase to its substrate, but strongly retarded the progress of the catalytic reaction by reducing the intermediate free radicals. The ions Cl-, Fe3+, and Ag+ exhibited either strong inhibitory effects on the catalysis of the substrate or a destructive effect on the structure of laccase itself. Furthermore, the results showed that an appropriate concentration of Cu2+ helped to promote the thermal stability of laccase during the enzymatic reaction. This study could help researchers to avoid the use of inhibitory exogenous metal ions and anions in the application of laccase and to maximize the value of laccase.
- Researchpp 5118-5127Matthews, S., Toghyani, A. E., Eskelinen, H., Luostarinen, L., Kärki, T., and Varis, J. (2017). "Method for limiting waste in wood plastic composite post-production by means of press unit control parameters utilizing temperature-related dimensional changes," BioRes. 12(3), 5118-5127.AbstractArticlePDF
Wood plastic composites are an interesting development in composite materials. They have gained wide market interest recently because of their sustainable material sources and beneficial material properties. Because thermosets or thermoplastics are involved in the composites, the material is temperature-dependent and susceptible to considerable dimensional changes with the variation of temperature. To minimize waste generation and enable reheated material post-processing, the distortion and displacement of the composite material has to be controlled precisely in different temperature ranges. This article studies ways to control this displacement and proposes a solution with an odometer and polynomial curve fit.
- Researchpp 5128-5139Xu, M., Zhang, Q., Xing, L., and Pu, J. (2017). "Novel medium-density fibreboard produced by ultrasonic-assisted pulp with superhydrophobic and flame-resistant properties," BioRes. 12(3), 5128-5139.AbstractArticlePDF
A novel medium-density fibreboard produced by an ultrasonic-assisted wheat straw pulp (UWP) was obtained without adhesives. It was then coated with a superhydrophobic sol solution integrated with an in vitro addition of two fire retardants (polyhedral methyl-silsesquioxane and ammonium polyphosphate) during the process of sol-gel reaction involving the two silane precursors tetraethyl orthosilicate (TEOS) and tridecafluorooctyltriethoxysilane (FAS). The coated UWP medium-density fibreboard (UPB) had good strength properties and possessed excellent hydrophobicity (water contact angle (WCA) above 150°), and flame-resistant properties (limiting oxygen index (LOI) improved by 5% compared with the original sample with a LOI of 18%). Meanwhile, the fibreboard also exhibited outstanding anti-permeability towards water (kept constant WCA for more than 1 h).
- Researchpp 5140-5154Vančo, M., Mazán, A., Barcík, S., Rajko, L., Koleda, P., Vyhnáliková, Z., and Safin, R. R. (2017). "Impact of selected technological, technical, and material factors on the quality of machined surface at face milling of thermally modified pine wood," BioRes. 12(3), 5140-5154.AbstractArticlePDF
The impact of technical and technological parameters on the quality of machining during milling of thermally modified pine wood (Pinus sylvestris L.) was studied. Experiments were conducted to evaluate the effects of tools (α = 30°, β = 45°, γ = 15°, 20°, and 30°), material (natural material, thermally treated at 160 °C, 180 °C, 210 °C, and 240 °C), and technological factors, such as cutting speed (20 m.min-1, 40 m.min-1, and 60 m.min-1) and feed rate (6 m.min-1, 10 m.min-1, and 15 m·min-1) on the quality of the machined surface (standard deviation of surface Ra). The roughness measurements were realized by a non-contact method using a laser. This paper aimed to highlight which one of the technological or tool factors had the greatest impact on the quality of the surface of heat-treated wood in face milling. The importance of the parameters impact on surface quality was in the following order: rake angle, feed rate, thermal treatment, and cutting speed.
- Researchpp 5155-5173Malá, D., Sedliačiková, M., Kaščáková, A., Benčiková, D., Vavrová, K., and Bikár, M. (2017). "Green logistics in Slovak small and medium wood-processing enterprises," BioRes. 12(3), 5155-5173.AbstractArticlePDF
Current approaches in logistics are focused on sustainable development of enterprises and society. Small and medium enterprises (SMEs), in this case wood-processing enterprises, can achieve this goal by implementing green logistics strategies in business practice. The main objective of this paper is to propose an algorithm for the implementation of green logistics activities in wood-processing SMEs, through a survey aimed at analyzing the accelerators and barriers to implementation in business practice. The research has been evaluated via methods of testing the statistical hypothesis (binomial test, Chi-squared, Friedman test, Wilcoxon test), methods of descriptive statistics, and data visualization. The survey found that one of the most significant determinants for implementing green logistics activities in a wood-processing enterprise is a decrease in cost. Based on the performed analysis, a model for the implementation of green logistics activities for wood-processing SMEs was proposed that includes appropriate activities that ensure the sustainable development of wood-processing SMEs in Slovakia.
- Researchpp 5174-5195Cai, Q., Xu, J., Zhang, S., and Wang, S. (2017). "Aromatic hydrocarbon generation from a simulated bio-oil fraction by dual-stage hydrogenation-cracking: Hydrogen supply and transfer behaviors," BioRes. 12(3), 5174-5195.AbstractArticlePDF
The improvement of the hydrogen-poor composition of bio-oil is important for its cracking to produce aromatic hydrocarbons. In this work, a mild hydrogenation pre-treatment and methanol cocracking were combined to implement proper hydrogen supplementation for cracking. Acetic acid (HAc), hydroxypropanone (HPO), and cyclopentanone (CPO) were selected as model compounds and mixed to prepare a simulated distilled fraction (SDF) of bio-oil. The hydrogen supply and transfer behaviours in hydrogenation-cracking were investigated. For the conversion of individual components: HAc was difficult to be hydrogenated, and therefore in the cracking stage, the conversion and oil phase yield were low; ketones were successfully hydrogenated to alcohols, and thus high aromatic hydrocarbon yields were achieved. Hydrogenation-cracking of SDF showed that the inferior performance of HAc was improved by an internal hydrogen transfer, namely the alcohols produced from ketones supplied hydrogen for HAc conversion. However, because of the high HAc content in SDF, this hydrogen supplement was not sufficient. Therefore, methanol (MeOH) was used as the coreactant for secondary hydrogen supply. The integral efficient conversion of SDF and MeOH to aromatic hydrocarbons was achieved when the MeOH blending ratio was 30%. Finally, a reaction mechanism of hydrogenation-cocracking was proposed.
- Researchpp 5196-5211Yasin, S., Curti, M., Rovero, G., Behary, N., Perwuelz, A., Giraud, S., Migliavacca, G., Chen, G., and Guan, J. (2017). "An alternative for the end-of-life phase of flame retardant textile products: Degradation of flame retardant and preliminary settings of energy valorization by gasification," BioRes. 12(3), 5196-5211.AbstractArticlePDF
It is well established that current flame retardant (FR) products at disposal generate various ecological hazards. Irrespective of their environmental impacts, the FR market is growing and is estimated to reach 2.8 million tons globally in 2018. In the textile domain, FRs are incorporated into baby clothing, pushchairs, car seats, etc. When disposed, these FR textile products end up in a landfill or are incinerated. These disposal processes are unsustainable. With landfilling, there is a huge chance of the FR product leaching into the environment. Similarly, FRs decrease energetic yields in the incineration process due to incomplete combustion. To cope with such issues, degradation and elimination of the FR product from the textile products before disposal could be a sustainable alternative. This study dealt with the preliminary degradation of flame retardant from the cotton textiles and its thermal characterization. Energy valorization by gasification is considered beneficial opposed to incineration with overall low energy recovery. The initial optimum gasification conditions including FR-treated cotton as a feeding material and potential outcomes of FR-treated cotton after degradation were characterized.