Volume 11 Issue 3
Latest articles
- Researchpp 6026-6039Wang, X., Li, Y., Deng, Y., Yu, W., Xie, X., and Wang, S. (2016). "Contributions of basic chemical components to the mechanical behavior of wood fiber cell walls as evaluated by nanoindentation," BioRes. 11(3), 6026-6039.AbstractArticlePDF
Selective chemical extraction was applied to gradually remove classes of chemical components from wood cell walls. Nanoindentation was performed on the control and treated wood cell walls to evaluate the contributions of the chemical components to the cell walls by measuring the elastic modulus, hardness, and creep compliance. Burger’s model was applied to simulate the process of nanoindentation and to gain insight into the response of visco-elastic properties to the chemical components. Wood extractives showed limited effects on the cell-wall mechanics; however, the removal of hemicelluloses and lignin resulted in reductions of 11.7% and 28.4%, respectively, in the elastic modulus and 14.8% and 30.4%, respectively, in the hardness. The extraction of hemicelluloses and lignin reduced the resistance of wood cell walls to creep. Furthermore, the extracted parameters from Burger’s modeling indicated that cellulose exhibited the greatest influence on the mechanical properties of wood cell wall, while hemicelluloses exhibited the greatest contribution to cell-wall viscosity, and lignin contributed extensively to cell-wall elasticity.
- Researchpp 6040-6049Tian, S. Q., and Chen, Z. C. (2016). "Dynamic analysis of bioethanol production from corn stover and immobilized yeast," BioRes. 11(3), 6040-6049.AbstractArticlePDF
The use of low cost and abundant corn stover in yeast fermentation can reduce product costs. In this study, bioethanol was produced from a hydrolysate of corn stover using immobilized yeast. A kinetic model was established for the total reducing sugar consumption and the production of bioethanol. The parameter estimation for kinetic modeling considered the main process variables during bioethanol production from corn stover. Total reducing sugar concentrations decreased exponentially in the bioethanol fermentation for 6 h; consumption was more than 90%. To use kinetic modelling of yeast growth for bioethanol fermentation, the value of μmax reached 0.2891 h-1, and the matrix inhibition constant (KIS) and production inhibition constant (KIP) were 8.9154 g/dm3 and 0.00676 g/dm3, respectively. To use kinetic modelling of fermentation time on bioethanol, the maximum ratio of bioethanol production rate (qmax) reached 1.427 g/g•L. However, KIS was 2.813 g/dm3, and KIP was 0.0149 g/dm3.
- Researchpp 6050-6061Kuutti, L., Pajari, H., Rovio, S., Kokkonen, J., and Nuopponen, M. (2016). "Chemical recovery in TEMPO oxidation," BioRes. 11(3), 6050-6061.AbstractArticlePDFTo be regarded as environmentally friendly and economical, an industrial process using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation requires recycling and/or recovery of chemicals. In this work, hypochlorite recycling via electrolysis was evaluated and potential means for TEMPO recovery were explored. The most important variable affecting electrochemical hypochlorite conversion was the concentration of sodium chloride in the feed solution. With 30 g/L NaCl salt, a sufficient hypochlorite concentration of 0.8% could be obtained for pulp oxidation of up to 5% consistency. The regeneration of hypochlorite in the treated TEMPO solution was possible by electrolysis and further oxidation performed with only a small addition of make-up chemicals. During electrolysis, some TEMPO degradation took place; therefore, recovery of TEMPO should be done prior to electrolysis. For the recovery of TEMPO, solid phase extraction (SPE) was tested. The best recovery of TEMPO was obtained using a combination of hydrophobic SPE resin material and distillation (yields between 52% and 87%).
- Researchpp 6062-6084Reeb, C. W., Venditti, R., Gonzalez, R., and Kelley, S. (2016). "Environmental LCA and financial analysis to evaluate the feasibility of bio-based sugar feedstock biomass supply globally: Part 2. Application of multi-criteria decision-making analysis as a method for biomass feedstock comparisons," BioRes. 11(3), 6062-6084.AbstractArticlePDFEarly-stage evaluation of biofuel and bioproduct technologies is extremely complicated and involves many disparate feasibility criteria, including technical, financial, environmental, logistic, legal, social, and other aspects. Problems can arise for decision-makers when evaluating renewable technologies at this early stage due to bias, shifting preferences or priorities, occurrence of trade-offs, and decision-making complexity. Thus, a method is needed for evaluating disparate, typically non-comparable criteria concurrently. In Part 1 of this research, cradle-to-grave environmental LCA was conducted for biomass delivery to a biosugar refinery using Ecoinvent v2.2 data and the TRACI 2 impact assessment method for midpoint impacts. Biomass availability, delivered cost, sugar yield, transportation distance, harvestable months per year, and other aspects of supply chain feasibility were measured for eighteen feedstock biomass types. In Part 2, stochastic multi-attribute analysis (SMAA) was used alongside LCA to develop an environmental preference single-score probability distribution function for feedstock alternatives. Weighted single-scoring and ranking, using multi-criteria decision-making analysis (MCDA), was conducted considering five criteria of biomass supply feasibility: biomass delivered cost, biosugar yield, harvestable months, transport distance, and environmental preference single-score. Corn was shown to cost the most, followed by switchgrass and U.S. primary forest products. Transport distance was found to be highest for residues due to low yield per acre and low covered area. Results of MCDA show that Brazilian eucalyptus and Malaysian empty fruit bunch biomass types were consistently preferred relative to other biomass types. In the U.S., Genera biomass sorghum is most holistically preferred. It is shown that SMAA is helpful for translating LCA data for decision science. It was shown that MCDA can be useful for early-stage biorefinery technology commercialization decision-making, using the novel decision science tool described herein.
- Researchpp 6085-6096Yu, H., Chen, G., Xu, Y., and Chen, D. (2016). "Experimental study on the gasification characteristics of biomass with CO2/air in an entrained-flow gasifier," BioRes. 11(3), 6085-6096.AbstractArticlePDFThis study explored the gasification characteristics of pine sawdust and rice straw with CO2/air in a bench-scale entrained-flow gasifier. The effects of various gasification parameters, i.e., CO2/C, temperature, and biomass type, on the syngas composition, gasification index, and tar yield were investigated. When compared to air gasification, the CO2/air agent for gasification improved the yield of CO, and it decreased the tar yield and the yield of CO2 produced from biomass. The cold gas efficiency (CGE) of pine sawdust reached 87.06% at the CO2/C equivalence ratio of 0.25, whereas that of rice straw reached 73.35% at the CO2/C equivalence ratio of 0.50. When compared with air gasification, the CO2/air gasification increased the CGE of pine sawdust and rice straw by 4.20% and 9.17%, respectively. However, excessive CO2 was unfavorable to the gasification process. As the temperature increased, the yields of CO and H2 increased, and the tar yield decreased, thus improving the syngas quality. This study indicated that the addition of the proper level of CO2 for gasification improved the overall gasification efficiency. Moreover, the improvement for rice straw (herbaceous plant) was more noteworthy than for pine sawdust (woody plant).
- Researchpp 6097-6109Qian, Y., Otsuka, Y., Sonoki, T., Mukhopadhyay, B., Nakamura, M., Jellison, J., and Goodell, B. (2016). "Engineered microbial production of 2-pyrone-4, 6-dicarboxylic acid from lignin residues for use as an industrial platform chemical," BioRes. 11(3), 6097-6109.AbstractArticlePDF
As one of the most abundant materials in nature, lignin has been used widely in co-generation operations and for fine chemicals and bio-fuels production. These uses, although important, are of relatively low value. Lignin contains many aromatic compounds with useful structures, and it is potentially more profitable to produce high-value fine chemicals from the low-molecular weight lignin fraction while using the high-molecular weight fraction for fuel or other applications. A transgenic P. putida bacterial strain PDHV85 was developed with the capability to convert vanillin, vanillic acid, and syringaldehyde to 2-pyrone-4,6-dicarboxylic acid (PDC), a novel platform chemical that can produce a variety of bio-based polymers. Initial testing with vanillin showed promise for lignin conversion. Testing for this, we used kraft lignin, Japanese cedar (Cryptomeria japonica), or birch (Betula platyphylla) to represent some of the most abundant industrial lignin sources from softwood and hardwood. Repeated manipulation of culture conditions and strain adaptation allowed conversion of these extracts to PDC by PDHV85, which has not previously been reported in a bacterial strain. No inhibition was observed at 0.14 mg/mL kraft lignin extract, 1.14 mg/mL Japanese cedar extract, nor 1.15 mg/mL birch extract when using the optimized growth conditions.
- Researchpp 6110-6124Liou, T. H., Wang, P. Y., and Liou, Y. H. (2016). "An effective method to enhance adsorption capacity and mesoporosity of activated carbon by pre-pyrolysis and chemical activation procedures," BioRes. 11(3), 6110-6124.AbstractArticlePDF
Activated carbons with large adsorption capacity and high mesopore fraction were obtained from rice straw by a combination of pre-pyrolysis and NaOH activation procedures. The experiments varied the pre-pyrolysis procedure, impregnation ratio of activating agent, and activation temperature. Samples were examined by inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffractometry (XRD), field-emission scanning-electronic microscopy (FE-SEM), thermogravimetric analysis (TGA), and N2-adsorption analysis. The surface area and pore characteristics of the activated carbons were investigated by the Brunauer, Emmett, Teller (BET) method, Dubinin-Raduch (DR) model, and the t-plot method. The surface area, pore volume, and iodine adsorption capacity of the samples increased with increasing activation temperature and the impregnation ratio of the activating agent. A maximum surface area of 2093 m2/g was obtained at the activation temperature of 900 °C. The pore structure in the one-stage activation procedure was mainly microporous. Two-stage activation procedure efficiently enhanced mesopore volume, and therefore further increased the adsorption capacity of activated carbons. NaOH acted as both the activating agent in the reaction and as the cleaner to remove the ash. The results of this experiment will be useful in developing resource recovery systems from agricultural biomass.
- Researchpp 6125-6136Wang, X., Qin, G., Chen, M., and Wang, J. (2016). "Microwave-assisted pyrolysis of cotton stalk with additives," BioRes. 11(3), 6125-6136.AbstractArticlePDF
The purpose of this study was to investigate the effects of microwave power and additives on the microwave-assisted pyrolysis of cotton stalk. Pyrolysis temperature profiles, product yields, and bio-oil components were analyzed. The results indicated that as the microwave power increased, so did the final temperature and heating rate. When microwave power increased from 800 to 1200 W, the yield of the solid residue decreased and gas yield increased, but the maximum bio-oil yield of 26.7% was achieved under a microwave power of 1000 W. All three of the additives (NaOH, Na2CO3, and H3PO4) increased the yields of solid residue and gas, while the yield of the bio-oil decreased. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the main components of bio-oil from microwave-assisted pyrolysis of pure sample were acetol, furfural, 2-methoxy-phenol, and 4-methyl-2-methoxy-phenol. Sodium hydroxide and sodium carbonate (NaOH and Na2CO3) greatly favor the formation of acetol. Phosphoric acid (H3PO4) remarkably promoted the formation of furfural and 4-methyl-2-methoxy-phenol, while H3PO4 inhibited the formation of acetol.
- Researchpp 6137-6150Wang, F., Ai, M., and Huang, F. (2016). "Development of method to determine the concentration of alkali-soluble lignin using Coomassie brilliant blue G-250," BioRes. 11(3), 6137-6150.AbstractArticlePDF
A new method involving the non-covalent binding of Coomassie Brilliant Blue G-250 (CBBG) to alkali-soluble lignin was developed. The binding of the dye to alkali-soluble lignin caused an increase in visible absorption at the maximum wavelength of 630 nm or 640 nm. A linear correlation of the absorbance at their maximum absorbing peak with alkali-soluble lignin concentration was observed. Lignin estimation in black liquor showed that the result of the new method and the gravimetric methods after acidification were closer to quantitative information than that obtained from UV spectroscopy. The isothermal titration calorimetric experiments, and Fourier Transform Infrared (FTIR) spectroscopy comparative analysis of precipitates washed by water, 4% ethanol, and 95% ethanol indicated that CBBG was bound to alkali-soluble lignin, and the binding was non-covalent. This potential method is reproducible, rapid, and cheap, and there is little or no inference from carbohydrate degradation products.
- Researchpp 6151-6161Zhang, L., Yang, Z., Zhang, Q., and Guo, H. (2016). "Tensile properties of maize stalk rind," BioRes. 11(3), 6151-6161.AbstractArticlePDFExperiments were carried out to measure the tensile properties of maize stalk rind. Two varieties of maize stalk (SD 12 and SD 9) and two moisture contents (fresh and air-dried) were tested. From each maize stalk sample, nine specimens (test coupons) of stalk rind were prepared to represent nine internodes from the bottom to the top of the maize stalk. The rind specimens were subjected to uniaxial tensile loading at a slow rate of 3 mm/min. From the recorded load-elongation curves, tensile stresses, modulus of elasticity, and tensile energy were determined. It was found that maize stalk rind exhibited elastic-plastic behavior, i.e., stress initially increased with strain in a linear fashion, and then nonlinearly until rupture. The measured ultimate tensile stress ranged from 178.15 to 80.53 MPa (average 122.26 MPa), elastic modulus from 35.01 to 11.38 GPa (average 19.32 GPa), and tensile energy from 0.004 to 0.099 J (average 0.032 J). Tensile strength, elastic modulus, and tensile energy decreased from the bottom to the top of stalk. There was a significant difference in tensile strength, modulus of elasticity, and tensile energy among two varieties and two moisture contents.