NC State
BioResources
  • Researchpp 1112-1127Colson, J., Kovalcik, A., Kucharczyk, P., and Gindl-Altmutter , W. (2017). "Reinforcement of poly(lactic acid) with spray-dried lignocellulosic material," BioRes. 12(1), 1112-1127.AbstractArticlePDF

    Effects of the addition of spray-dried lignocellulosic material in polylactic acid (PLA) were evaluated in this work. The lignocellulosic material was produced by spray-drying unbleached fibrous material provided by a paper mill. Beforehand, this material was made hydrophobic in the sizing step of the papermaking process. We propose that size present on the lignocellulose powder may act as a potential alternative to commonly-used coupling agents in the compounding of cellulosic filler with PLA. The lignocellulose powder was compounded with PLA in various amounts by extrusion and injection-moulding. Homogeneous dispersion of the lignocellulose powder in PLA was achieved. However, comprehensive mechanical and microscopic characterisation revealed only minor positive effects of the filler on PLA in a limited number of cases. Further investigation by gel permeation chromatography (GPC) showed a reduction of the average molar mass of the PLA matrix with increasing filler content, partly due to the residual inorganic matter in the spray-dried powder. This effect overshadowed the homogeneous dispersion and resulted in composites with weaker mechanical properties in most cases.

  • Researchpp 1128-1135Liang, T., and Wang, L. (2017). "Thermal treatment of poplar hemicelluloses at 180 to 220 °C under nitrogen atmosphere," BioRes. 12(1), 1128-1135.AbstractArticlePDF

    Hemicelluloses were separated from poplar wood and exposed to thermal treatment. Changes in chemical content were investigated from 180 °C to 220 °C in a nitrogen atmosphere. Fourier transform infrared spectroscopy, X-ray diffraction, and differential thermal gravimetric analysis were used to characterize the hemicellulose before and after the thermal treatment. The effects of temperature on hygroscopicity and color were measured. The results showed that hemicelluloses were sensitive to temperature. β-glucosidic bonds and side chains in hemicelluloses were cleaved around 180 °C, and the increased temperature promoted the breaking process. Esterification reactions happened during the treatment. When the treatment temperature reached 220 °C, all side chains broke down, and partial carbonization occurred. Therefore, the color became darker, and the hydrophobicity increased. This study could help to explain the changes in wood that occur during thermal treatment.

  • Researchpp 1136-1149Yang, H., Li, J., Mo, L., and Xu, J. (2017). "Gas-trap capturing of enzyme inhibitors in explosion gas from the pretreatment of corn stalk with dilute-sulfuric acid steam," BioRes. 12(1), 1136-1149.AbstractArticlePDF

    In order to reduce production costs, heated explosion gases generated from dilute-sulfuric acid catalytic steam explosion (SE) pretreatment in the pilot production were recovered to provide energy for subsequent steps and to supply heated water (gas condensate water) for the washing steps. However, organic compounds in the explosion gases accumulated in the circulating water during continuous production, which affected subsequent enzymatic hydrolysis steps. The aim of this work was to investigate the major organic components in SE pretreatment gaseous products, their formation mechanism, and their inhibitory effects on the subsequent enzymatic hydrolysis of pretreated corn stalk.

  • Researchpp 1150-1164Chen, W., Zhou, X., Shi, S., Nguyen, T., and Chen, M. (2017). "Thermal behavior and kinetic analysis of enzymatic hydrolysis lignin and high-density polyethylene during co-pyrolysis," BioRes. 12(1), 1150-1164.AbstractArticlePDF
    The thermal behaviors of enzymatic hydrolysis lignin (EHL), high-density polyethylene (HDPE), and their blend (50:50 wt.%) were revealed using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TG-FTIR). A first-order reaction model (Coats-Redfern) and non-isothermal model-free method (Ozawa-Flynn-Wall) were applied to the TG experimental data to determine the pyrolysis kinetic parameters. The results showed that H2O and CO2 were first released from the EHL due to the degradation of the weakly linked side chains. The degradation of lateral chains, the breakage of aromatic series in the EHL structure, and the β scission of HDPE led to the formation of H2O, CO2, C=O, aromatics, alkanes, and alkenes. Low intensities of H2O, CO2, alkanes, and alkenes were also observed in the final pyrolysis stage due to the degradation of lignin groups. Interactions during co-pyrolysis were observed in the pyrolysis stages of 390 to 542 °C and 563 to 790 °C. The activation energy values of EHL, HDPE, and their blend obtained by the Coats-Redfern method were 48.0 to 94.4 kJ/mol, 230.2 kJ/mol, and 42.7 to 260.1 kJ/mol, respectively. When the Ozawa-Flynn-Wall method was applied, activation energy ranges of 121.4 to 243.7 kJ/mol, 143.5 to 335.9 kJ/mol, and 74.8 to 260.9 kJ/mol for EHL, HDPE, and their blend, respectively, were observed.
  • Researchpp 1165-1178Todhanakasem, T., and Jittjang, S. (2017). "Evaluation of cellulase production by Zymomonas mobilis," BioRes. 12(1), 1165-1178.AbstractArticlePDF

    Z. mobilis has been widely studied as a potential microbe for consolidated bioprocessing to convert lignocellulosic biomass to fermentable sugars while at the same time producing ethanol. To achieve this goal, Z. mobilis must be evaluated for the production of cellulolytic enzyme. This work reports on the potential of intracellular and extracellular crude extracts from Z. mobilis ZM4 and TISTR 551 to hydrolyze various cellulosic materials including carboxymethylcellulose (CMC), delignified rice bran, microcrystalline cellulose, and filter paper. Crude intracellular extracts from ZM4 and TISTR 551 showed high endoglucanase activity with CMC substrates at an optimal pH of 6 to 7 and temperature range of 30 to 40 °C. The endoglucanase activity from the crude extracts was significantly higher than the exoglucanase activity. Of the high crystalline celluloses substrates tested, the best results were obtained for the hydrolysis of delignified rice bran by crude intracellular enzyme extracts of Z. mobilis TISTR 551.

  • Researchpp 1179-1189Jiménez-Leyva, M., Beltrán-Arredondo, L. I., Cervantes-Gámez, R., Cervantes-Chávez, J., López-Meyer, M., Castro-Ochoa, D., Calderón-Vázquez, C. L., and Castro-Martínez, C. (2017). "Effect of CMC and MCC as sole carbon sources on cellulase activity and egIS gene expression in three Bacillus subtilis strains isolated from corn stover," BioRes. 12(1), 1179-1189.AbstractArticlePDF
    Cellulolytic activities in Bacillus subtilis have been demonstrated and it is known that the eglS gene encodes an endoglucanase that could play a key role. Three Bacillus subtilis strains (RZ164, RS351, and RS273) isolated from corn stover with contrasting cellulase activity were examined in this work. The aim was to analyze the influence of eglS gene on the ability of bacteria to grow on a liquid medium supplied with carboxymethyl cellulose (CMC) or microcrystalline cellulose (MCC) as sole carbon sources. All strains displayed similar growth in CMC medium and comparable exoglucanase and endoglucanase activity. However, the expression of eglS did not correlate among strains. On the other hand, when MCC was the carbon source tested, the growth of RS351 was higher than that obtained by RZ164 and RS273 strains. This behavior could be related to the level of cellulase activities displayed by this strain. Besides, eglS expression was higher in RS351 strain, suggesting a direct participation of this enzyme when the carbon source is MCC. Taken together, eglS could be involved in different roles exerted by these strains on either exo- or endoglucanase activity and under either substrate. The enzymes described here could be considered good alternatives for biomass conversion.
  • Researchpp 1190-1200Cheng, Z., Yang, R., and Liu, X. (2017). "Production of bacterial cellulose by Acetobacter xylinum through utilizing acetic acid hydrolysate of bagasse as low-cost carbon source," BioRes. 12(1), 1190-1200.AbstractArticlePDF
    Bacterial cellulose (BC) is a promising and renewable nanomaterial due to its unique structural features and appealing properties. Intensive study on BC preparation has been mainly focused on biosynthesis by certain bacteria, while the high economic costs of fermentation, especially the carbon sources, remain challenges to its application. In this study, bacterial cellulose was synthesized by Acetobacter xylinum with the acetic acid hydrolysate of bagasse used as carbon source. After the bagasse was pretreated by acetic acid, the components in hydrolysate and the removal rate was investigated, and the pretreatment conditions were optimized as follows: temperature of 160 °C, heating time of 60 min, addition of acetic acid of 2.0% (m/m), and solid-to-liquid ratio of 1/5. Prior to Acetobacter xylinum cultivation, the hydrolysate was detoxified by activated carbon. The detoxification process was very efficient for BC production, with a yield up to 2.13 g/L when the dosage of activated carbon was 5% (m/V). Furthermore, the obtained BC was characterized by scanning electron microscopy (SEM), which showed that the ribbons width of BC was between 30 and 80 nm. X-ray patterns showed the crystallinity value was 74.6 % and the crystallinity index (CI%) was 66.5 %, which also evidenced the presence of peaks characteristic of Cellulose I polymorph. In conclusion, it is feasible to produce BC from bagasse hydrolysate. This model of waste recycling could aid in the development of sustainable strategies.
  • Researchpp 1201-1215Cai, C., Liu, Q., Tan, J., Wang, T., Zhang, Q., and Ma, L. (2017). "Conversion of cellulose to 5-hydroxymethylfurfural using inorganic acidic catalysts in the presence of pressurized water steam," BioRes. 12(1), 1201-1215.AbstractArticlePDF

    Traditionally, 5-hydroxymethylfurfural (HMF) is produced by using a water-organic solvent medium, which inevitably increases production costs and adds subsequent separation processes. To minimize cost and/or toxic organic solvent usage, this study presents an effective pathway for producing HMF from cellulose. The process uses a fixed bed reactor with a steam stripping process in which the cellulose is converted into HMF and other products in the presence of acidic inorganic salts. In the process, the cellulose was hydrolyzed to glucose, which was followed by isomerization to fructose and fructose dehydration into HMF. The produced HMF was easily vaporized into the gas phase, which avoided its conversion into undesired byproducts. An acceptable HMF yield of 28.2 mol% was obtained using KH2PO4 as the catalyst at 270 °C. This technology could be used to obtain both HMF and furfural (FF) from different lignocellulosic biomasses. This stripping technology has advantages such as the lack of organic solvents, showing an alternative and green HMF and/or FF production from lignocellulosic biomass.

  • Researchpp 1216-1227Kılıç, M. (2017). "Determination of the surface roughness values of Turkish red pine (Pinus brutia (Ten.)) woods," BioRes. 12(1), 1216-1227.AbstractArticlePDF
    The aim of this study was to determine the surface roughness values of Turkish red pine samples obtained from the seven natural growth areas in Turkey. The samples were cut with a circular saw, planed with a thickness machine, and sanded with a sanding machine (with No. 80 sandpaper). After the samples were processed as radial and tangential surfaces in the machines, their surface roughness values (Ra, Ry, and Rz) were measured in accordance with ISO 4288 (1996). According to the statistical results, the lowest surface roughness values were in the samples obtained from the Muğla and Samsun areas on the tangential surfaces that were processed with the thickness machine.
  • Researchpp 1228-1245Huabcharoen, P., Wimolmala, E., Markpin, T., and Sombatsompop, N. (2017). "Purification and characterization of silica from sugarcane bagasse ash as a reinforcing filler in natural rubber composites," BioRes. 12(1), 1228-1245.AbstractArticlePDF
    This work studied the chemical composition, cure characteristics, and morphological and mechanical properties of natural rubber (NR) compounds filled with silica, which was derived from bagasse ash (BA). The BA filler underwent various preparation processes (untreated, hydrochloric acid (HCl)-treated, and HCl/ammonium fluoride (HCl/NH4F) extracted). The results revealed that the main functional group of the BA was silica. After purification by HCl and HCl/NH4F, the silica content increased from 77.2% to 90.6% and 97.0%, respectively. Longer cure times and lower crosslinking were obtained after purifying the silica. Treatment of silica with HCl/NH4F improved the tensile strength and compression set when added at 15 parts per hundred rubber (phr) loading. Purification with HCl and HCl/NH4F acted as an obstacle to rubber-rubber crosslinking, but helped to moderate the filler–filler interaction. The elongation range for the NR containing the BA silica in this work was 900% to 1,100%. The use of HCl/NH4F-extracted silica in NR vulcanizates had no effect on the lightness, while the untreated and HCl-treated silica displayed decreased lightness. The silica from BA is recommended for use as reinforcing filler in NR compounds if treated with HCl followed by NH4F extraction before use. The optimal loading of the treated silica was 15 phr.

@BioResJournal

54 years ago

Read More