Volume 3 Issue 3
Latest articles
Vititnev, A., and Kazitsin, S. (2025). "Using Siberian fir (Abies sibirica) dead wood in wood fiberboard production," BioResources 20(3), 5315–5330.Rossi, C., and Solé, A. (2025). "A systematic review on enzymatic refining of recycled fibers: A potential to be unlocked," BioResources 20(3), Page numbers to be added.
View our current issue- Reviewpp 929-980Hubbe, M. A., Rojas, O. J., Lucia, L. A., and Sain, M. (2008). "Cellulosic nanocomposites: A review," BioRes. 3(3), 929-980.AbstractPDFBecause of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.