NC State
BioResources
  • Reviewpp 4377-4399Mohamad Ibrahim, M. N., Sriprasanthi, R. B., Shamsudeen, S., Adam, F., and Bhawani, S. A. (2012). "A concise review of the natural existance, synthesis, properties, and applications of syringaldehyde," BioRes. 7(3), 4377-4399.AbstractArticlePDF

    Syringaldehyde is a promising aromatic aldehyde that no longer deserves to remain in obscurity. It possesses worthy bioactive properties and is, therefore, used in pharmaceuticals, food, cosmetics, textiles, pulp and paper industries, and even in biological control applications. Mostly, the synthetic form of syringaldehyde is being used. This review serves as an appraisal of potential research and commercialization of naturally occurring syringaldehyde beyond the scope of the food and cosmetic industries. This article also provides a comprehensive account of the various conventional extraction and chromatographic techniques used in the separation, isolation, and quantification of syringaldehyde. Further, to understand this unique compound, a brief outline on the natural formation of syringaldehyde in lignin is accentuated in this article.

  • Reviewpp 4400-4423Suhaily, S. S., Jawaid, M., Abdul Khalil, H. P. S., Mohamed, A. R., and Ibrahim, F. (2012). "A review of oil palm biocomposites for furniture design and applications: Potential and challenges," BioRes. 7(3), 4400-4423.AbstractArticlePDF

    This review considers the potential and challenges of using agro-based oil palm biomasses, including the trunk, frond, empty fruit bunch, and palm press fiber biocomposites, for furniture applications. Currently, design and quality rather than price are becoming the primary concern for consumers when buying new furniture. Within this context, this paper focuses on the design of innovative, sustainable furniture from agro-based biocomposites to meet the needs of future population growth and technology. This research also discusses the need for biocomposite materials that do not depend on the growth of populations, but on the growth and development of the economy. This study focuses on globally available agro-based biocomposites, especially those from oil palm biomass: plywood, medium density fiberboard (MDF), wood plastic composite (WPC), laminated veneer lumber (LVL), oriented strand board (OSB), hardboards, and particleboard. Additional positive aspects of biocomposites are their environmentally friendly character, high quality, competitive design, and capacity to improve the value proposition of high-end products. These attributes increase the demand for agro-based biocomposite furniture on the international market.

  • Reviewpp 4424-4450Vishtal, A., and Retulainen, E. (2012). "Deep-drawing of paper and paperboard: The role of material properties," BioRes. 7(3), 4424-4450.AbstractArticlePDF

    Fibre-based packaging materials are widely utilized all over the world. They have several important advantages in comparison with fossil-based packaging: biodegradability, recyclability, and renewability. However, fibre-based packaging cannot fully compete with plastic in its barrier properties. Also there are limitations regarding its shapes due to poorer formability. The deep-drawing forming process can be used for the production of advanced three-dimensional shapes from paper-based materials. Formability and related characteristics are essential for deep-drawing of paper-based materials. This paper aims to give an overview of the deep-drawing of paper-based materials with the emphasis on the experienced deformations, on the role of mechanical properties of materials in deep-drawing, and on the typical defects found in the shapes after the forming. Additionally, strategies are proposed to help mitigate common problems in deep-drawing.

  • Reviewpp 4451-4490Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., and Henriksen, U. B. (2012). "Recent developments in biomass pelletization - A review," BioRes. 7(3), 4451-4490.AbstractArticlePDF

    The depletion of fossil fuels and the need to reduce greenhouse gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is expected for the coming years. Due to an increase in demand for biomass, the traditionally used wood residues from sawmills and pulp and paper industry are not sufficient to meet future needs. An extended raw material base consisting of a broad variety of fibrous residues from agriculture and food industries, as well as thermal pre-treatment processes, provides new challenges for the pellet industry. Pellet production has been an established process for several decades, but only in the past five years has there been significant progress made to understand the key factors affecting pelletizing processes. A good understanding about the pelletizing process, especially the processing parameters and their effect on pellet formation and bonding are important for process and product optimization. The present review provides a comprehensive overview of the latest insights into the biomass pelletization processes, such as the forces involved in the pelletizing processes, modeling, bonding, and adhesive mechanisms. Furthermore, thermal pretreatment of the biomass, i.e. torrefaction and other thermal treatment to enhance the fuel properties of biomass pellets are discussed.

@BioResJournal

55 years ago

Read More