NC State
BioResources
  • Researchpp 2835-2847Xie, S., Tong, G., and Chin, Y. F. (2012). "The effect of offset printing ink on laser toner ink agglomeration under neutral pulping conditions," BioRes. 7(3), 2835-2847.AbstractArticlePDF

    1-octadecanol is known to be a highly effective agglomerating agent for laser toner ink. However, the office waste paper used in the actual production often contains various types of inks. The effect of the offset ink and types of surfactants with different charge characteristics were studied relative to the agglomeration of the laser toner ink under neutral pulping conditions. It was found that the addition of a small amount of the offset ink printed waste paper was beneficial for the agglomeration of the laser toner ink. The optimal percentage of addition is 12.5% to 25%. The offset printed ink had a positive charge of 0.001±0.0005 mEq/g when the offset ink was treated by 70˚C water at neutral conditions. Addition of a proper amount of cationic surfactant was beneficial to improve the agglomeration at any ratio of the mixed laser printed and offset waste papers. When the percentage of offset waste paper was less than 50%, the addition of anionic surfactant and nonionic surfactant was harmful for agglomeration, and there was no significant effect at higher offset content.

  • Researchpp 2848-2859Zhang, B., Shahbaz, A., Wang, L., Whitmore, A., and Riddick, B. A. (2012). "Fermentation of glucose and xylose in cattail processed by different pretreatment technologies," BioRes. 7(3), 2848-2859.AbstractArticlePDF

    The effects of different pretreatment technologies, including sulfuric acid, hot-water, NaOH, and MgCl2 pretreatments, on the fermentation of xylose and glucose to ethanol by Saccharomyces cerevisiae ATCC 24858 and Escherichia coli KO11 were investigated. In this study, cattail was used as the feedstock. The use of aquatic plant cattails to produce biofuel will add value to land and reduce emissions of greenhouse gases by replacing petroleum products. The pretreated biomass first was enzymatically hydrolyzed for 2 days, followed by a 2-day Simultaneous Saccharification and Fermentation (SSF) using S. cerevisiae. The glucose to ethanol yields were approximately 85 to 91% of the theoretical yield for this S. cerevisiae strain. Glucose and xylose released from cattail cellulose and hemicellulose could be fermented to ethanol using E. coli KO11, resulting in approximately 85% of the theoretical ethanol yield using either a Separate Hydrolysis and Fermentation (SHF) process or a SSF process. In order to improve the sugars to ethanol yields, a detoxification process is necessary to remove the inhibitory compounds produced during the acid pretreatment process. Among the four pretreatment methods, the dilute acid pretreatment was found to be superior, and additional research is required to optimize the economics of the overall biorefinery process.

  • Researchpp 2860-2870Feng, P., and Chen, F. (2012). "Preparation and characterization of acetic acid lignin-based epoxy blends," BioRes. 7(3), 2860-2870.AbstractArticlePDF

    Lignin-based epoxy resin (LER) was prepared from phenolated lignin (PL) and epichlorohydrin (ECH) in the presence of sodium hydroxide. The eucalyptus acetic acid lignin (AAL) was first reacted with phenol in the presence of sulfuric acid to obtain PL. Then, PL was reacted with ECH in aqueous sodium hydroxide to obtain LER. LER was mixed with diglycidyl ether of bisphenol A (E-44) and then cured with triethylenetetramine (TETA). The initial thermal degradation temperature (Td) of the cured epoxy blends decreased with the increase in LER content. The residue ratio at 500 °C of the cured epoxy blends (R500), however, increased with the LER content. The maximum adhesive shear strength of the cured epoxy blends was obtained at 20 wt% of LER. The water absorption of epoxy blends increased with increasing the content of LER. SEM photos showed that increasing the content of LER increased inhomogeneity and porosity of epoxy blends.

  • Researchpp 2871-2882Kalliola, A., Savolainen, A., Ohra-aho, T., Faccio, G., and Tamminen, T. (2012). "Reducing the content of VOCs of softwood kraft lignins for material applications," BioRes. 7(3), 2871-2882.AbstractArticlePDF

    Three laccases, functioning in mild acidic, and one in slightly alkaline conditions, were evaluated in order to reduce low-molecular phenolic VOCs of kraft lignins, which could be used in lignin/natural fibers composites. The potential of a sulfhydryl oxidase to catalyze the oxidation of sulfur containing VOCs (thiols) was also tested in combination with the laccase-catalyzed oxidation. In addition, oxidation at alkaline pH at room temperature that may induce polymerization of phenolics in an analogous manner to the laccase-catalyzed reaction was investigated. Enzyme reactivity towards lignin was evaluated as consumption of oxygen in the reaction solution. The effect of treatments on VOC reduction was determined both by sensing (odorimetry) and chemical (TD-GC/MS, SEC) analyses. Laccases, Lcc2, and MaL from Thielavia arenaria and Melanocarpus albomyces, respectively, showed potential in reducing odors. The most promising results were obtained by oxidizing lignin with O2 at alkaline pH. However, the odor threshold values of the main VOC compounds are extremely low, which poses a challenge to VOC reduction.

  • Researchpp 2883-2894Naylor, A., Hackney, P., Perera, N., and Clahr, E. (2012). "A predictive model for the cutting force in wood machining developed using mechanical properties," BioRes. 7(3), 2883-2894.AbstractArticlePDF

    In this study a number of work-piece variations were evaluated whilst limiting the cutting conditions. Eight wood species controlled at four moisture levels were machined along and across the wood grain. The tool used during cutting was designed to resemble a rip saw tooth with zero rake angle and narrow edge width. Each work-piece variation machined in the cutting tests was subjected to mechanical tests that evaluated bending properties across the grain and shear properties along the grain. The regression model establishes a relationship between the bending properties for cutting forces across the grain, as well as shear properties for cutting forces along the grain. F and R² values show that the elastic properties of the wood in bending and shear have less influence on the cutting forces when compared to the strength and toughness. Additionally, density is seen to have less influence on the cutting force along the grain. This is explained by the tool passing through an unquantifiable proportion of early and latewood fibers from the annual growth rings. Cutting across the grain, the tool is forced to machine through approximately the same proportion of earlywood and latewood fibres.

  • Researchpp 2895-2915Chowdhury, Z. Z., Zain, S. M., Khan, R. A., Rafique, R. F., and Khalid, K. (2012). "Batch and fixed bed adsorption studies of lead (II) cations from aqueous solutions onto granular activated carbon derived from Mangostana garcinia shell," BioRes. 7(3), 2895-2915.AbstractArticlePDF

    The feasibility of granular activated carbon (GAC) derived from Mangostene (Mangostana garcinia) fruit shell to remove lead, Pb2+ cations was investigated in batch and fixed bed sorption systems. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics by using an initial lead (Pb2+ ions) concentration of 50 to 100 mg/L at pH 5.5. Equilibrium data were fitted using Langmuir, Freundlich, and Temkin linear equation models at temperatures 30°C, 50°C, and 70°C. Langmuir maximum monolayer sorption capacity was 25.00 mg/g at 30°C. The experimental data were best represented by pseudo-second-order and Elovich models. The sorption process was found to be feasible, endothermic, and spontaneous. In column experiments, the effects of initial cation concentration (50 mg/L, 70 mg/L, and 100 mg/L), bed height (4.5 cm and 3 cm), and flow rate (1 mL/min and 3 mL/min) on the breakthrough characteristics were evaluated. Breakthrough curves were further analyzed by using Thomas and Yoon Nelson models to study column dynamics. The column was regenerated and reused consecutively for four cycles. The result demonstrated that the prepared activated carbon was suitable for removal of Pb2+ from synthetic aqueous solution using batch, as well as fixed bed sorption systems.

  • Researchpp 2916-2932Li, D., Li, J., Hu, X., and Li, L. (2012). "Effects of ethylene vinyl acetate content on physical and mechanical properties of wood-plastic composites," BioRes. 7(3), 2916-2932.AbstractArticlePDF

    To investigate the effects of different ethylene vinyl acetate (EVA) contents on the performance of wood plastic composites (WPCs) made from poplar wood flour (PWF) and high density polyethylene (HDPE), physical properties tests, mechanical properties tests, and scanning electron microscope (SEM) tests were employed. The thermal stability and functional groups of PWF treated by EVA were evaluated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Fourier transform infrared spectroscopy (FTIR) , respectively. The results showed that the hardness, water uptake, and thickness swelling of the WPCs was reduced with increasing content of EVA. The MOR and tensile strength of the WPC treated by 15% EVA content were enhanced by 17.48% and 9.97%, respectively, compared with those of the WPC without EVA. TGA results showed that the thermal stability of PWF treated by EVA was improved. FTIR analysis indicated that PWF was reacted and coated with EVA. SEM results showed that gaps and voids hardly existed in the sections of the WPCs treated by EVA. This research suggests that the flexibility and mechanical properties of WPCs could be improved by adding EVA. The best condition of EVA content could be 15%.

  • Researchpp 2933-2947Pervaiz, M., and Sain, M. (2012). "High-yield protein recovery from secondary sludge of paper mill effluent and its characterization," BioRes. 7(3), 2933-2947.AbstractArticlePDF

    Maximizing recovery and characterization of extractable proteins from secondary paper sludge is essential to explore the potential value from utilization of readily available waste products from pulp and paper mills. A multistep physicochemical recovery process was used, involving optimum alkaline solubilization of protein into an aqueous phase followed by augmented physical disruption of cell membranes. The final precipitation of solubilised protein was carried out using different acidic media. The optimization studies revealed that the best removal of intercellular contents from sludge can be achieved at pH 12; at this level, up to 88% of available protein is solubilised into the aqueous phase. Of all the precipitating agents used, sulphuric acid proved most effective by recovering 90% of disrupted protein. The combined effect of french press and sonication techniques resulted in significant improvement in the overall yield of recovered sludge protein (RSP). The characterization studies showed the presence of common and essential amino acids in RSP in significant quantities; it also showed that the recovery process can significantly reduce or eliminate heavy metals present in the sludge. The molecular weights (MW) of extractable proteins were determined by PAGE, and it was observed that RSP contains both low and high MW fractions.

  • Researchpp 2948-2959Abdullah, C. K., Jawaid, M., Abdul Khalil, H. P. S., Zaidon, A., and Hadiyane, A. (2012). "Oil palm trunk polymer composite: Morphology, water absorption, and thickness swelling behaviours," BioRes. 7(3), 2948-2959.AbstractArticlePDF

    In this research, impregnated oil palm trunks (OPT) and polymer composites were prepared from a combination of dried oil palm trunks with phenol formaldehyde (PF) and urea formaldehyde (UF) resin in different resin percentages using an impregnation method. Time of impregnation was a parameter used to control the percentage of resin content in the oil palm trunks. These studies investigated the effect of resin content and types of resin on the physical properties of impregnated OPT. Water absorption tests revealed that OPT polymer composite with 75% PF resin loading had increases of 21% and 26% for OPT polymer composites with 75% UF resin loading. The thickness swelling of OPT polymer composites with 75% PF resin loading exhibited the lowest value of 3.30% as compared with OPT polymer composite with 75% UF resin loading, which exhibited a value of 4.30%. The dimensional stability of the OPT polymer composites with the highest resin loading was slightly lower when compared to rubberwood. Scanning electron micrographs show that PF resin placement in OPT polymer composites was better, and resin penetration retained the original dried OPT structure.

  • Researchpp 2960-2969Tascioglu, C., Yalcin, M., de Troya, T., and Sivrikaya, H. (2012). "Termiticidal properties of some wood and bark extracts used as wood preservatives," BioRes. 7(3), 2960-2969.AbstractArticlePDF

    The feasibility of using naturally extracted solutions as wood preservative chemical was tested. Extracts extracted from mimosa (Acacia mollissima Willd.), quebracho (Shinopsis lorentzii Griseb.), and Pinus brutia Ten. bark were used to treat sapwood of Scotch pine (Pinus sylvestris L.), beech (Fagus orientalis L.), and poplar (Populus tremula L.) at two different retention levels (6% and 12% weight/weight) against the subterranean termite Reticulitermes grassei Clement (Blattodea: Rhinotermitidae). The lowest mass loss and highest termite mortality rates were recorded for mimosa and quebracho extract treated woods at the 12% concentration level. Pine bark extract seemed to be ineffective as a wood preservative chemical even at the highest retention level. The results suggest that mimosa and quebracho extracts can be utilized as an environmentally-sound alternative wood preservative chemicals for indoor applications against Reticulitermes grassei.