Volume 8 Issue 4
Latest articles
- Reviewpp 6556-6629Hubbe, M. A., Ayoub, A., Daystar, J. S., Venditti, R. A., and Pawlak, J. J. (2013). "Enhanced absorbent products incorporating cellulose and its derivatives: A Review," BioRes. 8(4), 6556-6629.AbstractArticlePDF
Cellulose and some cellulose derivatives can play vital roles in the enhancement of the performance of absorbent products. Cellulose itself, in the form of cellulosic fibers or nano-fibers, can provide structure, bulk, water-holding capacity, and channeling of fluids over a wide dimensional range. Likewise, cellulose derivatives such as carboxymethylcellulose (CMC) have been widely studied as components in superabsorbent polymer (SAP) formulations. The present review focuses on strategies and mechanisms in which inclusion of cellulose – in its various forms – can enhance either the capacity or the rate of aqueous fluid absorption in various potential applications.
- Reviewpp 6630-6649Rodrigues, J. N., Dias, A. M. P. G., and Providência, P. (2013). "Timber-concrete composite bridges: State-of-the-art review," BioRes. 8(4), 6630-6649.AbstractArticlePDF
This review article presents a state-of-the-art survey on timber-concrete composite (TCC) bridges. It starts with a presentation of a sample of relevant TCC bridges, offering a global perspective on the use of this type of bridge. The number of TCC bridges has clearly increased in the past few years, and some of the reasons for this trend are explored. Next, an extensive literature review is presented regarding the most significant technological innovations and recent developments in the application of TCC structures to bridge construction. Firstly, the engineering specificities and the advantages of TCC bridge structural systems are enumerated. Afterwards, the importance of proper mechanical connection for optimal performance of TCC structures is explained, and a thorough description of the connection systems suitable for bridge construction is provided. Some research into the structural behavior of TCC bridges under service conditions is then presented and discussed. Finally, possible areas of future research regarding the development of TCC bridges are suggested.