Volume 8 Issue 4
Latest articles
- Reviewpp 6523-6555Chowdhury, Z. Z., Abd Hamid, S. B., Das, R., Hasan, M. R., Zain, S. M., Khalid, K., and Uddin, M. N. (2013). "Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution," BioRes. 8(4), 6523-6555.AbstractArticlePDF
The feasibility of using lignocellulosic biomass as a source for preparing carbon adsorbents has received rigorous attention over the last few decades. Many studies have discussed its great potential as a renewable feedstock for preparation of carbonaceous adsorbent materials. This review paper provides an overview of the different types of carbonization techniques that so far have been applied to convert lignocellulosic biomass to carbon adsorbents. The effects of various process parameters on the conventional pyrolysis process are reviewed. The paper focuses on the mechanism for the formation of carbons, its wide variety of applications for waste effluents, and the regeneration techniques so far adopted by researchers. Low-cost carbons derived from lignocellulosic biomass have demonstrated excellent capabilities for the removal of organic and inorganic contaminants, including some pharmaceutical compounds, from the waste aqueous stream.
- Reviewpp 6630-6649Rodrigues, J. N., Dias, A. M. P. G., and Providência, P. (2013). "Timber-concrete composite bridges: State-of-the-art review," BioRes. 8(4), 6630-6649.AbstractArticlePDF
This review article presents a state-of-the-art survey on timber-concrete composite (TCC) bridges. It starts with a presentation of a sample of relevant TCC bridges, offering a global perspective on the use of this type of bridge. The number of TCC bridges has clearly increased in the past few years, and some of the reasons for this trend are explored. Next, an extensive literature review is presented regarding the most significant technological innovations and recent developments in the application of TCC structures to bridge construction. Firstly, the engineering specificities and the advantages of TCC bridge structural systems are enumerated. Afterwards, the importance of proper mechanical connection for optimal performance of TCC structures is explained, and a thorough description of the connection systems suitable for bridge construction is provided. Some research into the structural behavior of TCC bridges under service conditions is then presented and discussed. Finally, possible areas of future research regarding the development of TCC bridges are suggested.