NC State
Peng, L., Lin, L., Li, H., and Chen, K. (2013). "Acid-catalyzed direct synthesis of methyl levulinate from paper sludge in methanol medium," BioRes. 8(4), 5895-5907.


A direct synthesis of methyl levulinate from the degradation of paper sludge in a methanol medium at moderate temperatures ≤ 230 °C) was performed using low-concentration sulfuric acid (≤ 0.05 mol/L) as the catalyst. Response surface methodology with a four-factor, five-level central composite rotatable design was employed to optimize the process conditions for . The yields of methyl levulinate and dimethyl ether as a function of the process variables were fitted to second-order polynomial models through application of multiple regression analyses. A good agreement between the experimental and modeled data was obtained. When the controlled yield of dimethyl ether was less than 20%, a maximum methyl levulinate yield of 54.8% was achieved, corresponding to 27.7% (w/w) overall yield for dry paper sludge. The findings indicated that paper sludge can act as a potential biomass material for upgrading and converting into high value-added chemicals.
Download PDF