NC State
BioResources
Zhang, S., Li, W., Zeng, X., Sun, Y., and Lin, L. (2014). "Aerobic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran with active manganese dioxide catalyst," BioRes. 9(3), 4656-4666.

Abstract

5-hydroxymethylfurfural (HMF) is an important bio-based platform chemical, and its aerobic selective oxidation to 2,5-diformylfuran (DFF) still remains a challenge. This work dealt with active manganese dioxide (AMD) and efficiently catalyzed HMF oxidation to DFF with a yield of ~73% at 393 K and 60 bar O2 in N,N-Dimethylformamide (DMF). Through analysis of liquid products and the catalyst characterization using X-ray diffraction (XRD), a scanning electron microscope (SEM), a transmission electron microscope (TEM), and an elemental analyzer, it can be seen that this AMD catalyst is a low-cost, efficient, and environmentally benign heterogeneous catalyst for the aerobic selective oxidation of HMF to DFF in a one-pot technique. These research results may provide guidance for the development of more efficient catalysts for the future industrial production of high-value added DFF.
Download PDF