NC State
Fan, M. (2010). "Characterization and performance of elementary hemp fibres: Factors influencing tensile strength," BioRes. 5(4), 2307-2322.


This paper presents the outcomes from an extensive investigation on the structure and geometry of single hemp fibres, as well as configurations and related tensile strength (TS) of hemp fibres, with the aid of field emission scanning and optical microscopy. The results showed that 1) the TS increased with the decrease of the diameter of individual test pieces, due possibly to the stacks of multiple single fibres within the test pieces; 2) shear failure between single fibres in a test pieces played a significant role in the test results; 3) the TS was closely related to the number of both the inherent joints along the fibre length and single fibres contained in the test pieces; 4) the splits along the length and width of hemp fibres may complicate the test results, and 5) the optimized treatment prior to decortications may double the TS of hemp fibres compared to a normal retting processing. Reliable TS of single hemp fibres have been derived by a power regression, and the predicted TS were verified with an excellent agreement with experimentally tested results. The tensile strain-stress plot was found to be linear for all hemp test pieces, showing that the behaviour of single hemp fibres obeys Hooke’s law.
Download PDF