NC State
BioResources
Gao, X., Yu, Y., Jiang, Z., Liu, Y., Zhang, W., and Zhang, L. (2018). "Direct dissolution and spinning of the agricultural waste of corn straw pulp," BioRes. 13(3), 4916-4930.

Abstract

Agricultural waste of corn straw pulp was successfully prepared into fibers using a tetrabutylammonium acetate (TBAA) and dimethyl sulfoxide (DMSO) solvent system via a dry-jet wet spinning process at 35 °C. The dissolving process of cellulose in TBAA/DMSO was observed through a polarization microscope, and the rheological behavior of the cellulose/ TBAA/DMSO solution was also studied. The crystalline and microstructure of the regenerated cellulose fibers prepared from corn straw were investigated by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). In addition, the morphology was characterized with a scanning electron microscope (SEM). The thermal stability of corn straw pulp and the regenerated cellulose was also explored. Due to the presence of residual lignin, a longer time was needed for the complete dissolution of corn straw compared with pure wood pulp. In addition, the degree of polymerization and the elongation-at-break of the regenerated fiber had a small amount of attenuation. Despite the deficiencies, a good spinnability of corn straw cellulose solution could still be achieved. Fibers with a round and compact structure as well as a smooth surface were obtained.


Download PDF