NC State
Zheng, C.-Y., Tao, H.-X., and Xie, X.-A. (2013). "Distribution and characterizations of liquefaction of celluloses in sub- and super-critical ethanol," BioRes. 8(1), 648-662.


Effects of reaction conditions (temperature, retention time, and cellulose/ ethanol ratio) on biomass liquefaction in sub- and super-critical ethanol were investigated in this work. The liquefaction system was divided into the following fractions: a volatile organic compounds fraction, a gas fraction, a heavy oil fraction, a water-soluble oil fraction, and a solid residue fraction. Results showed that for three samples, the SR yield of microcrystalline cellulose was highest compared with corn stalk cellulose and rice straw cellulose at the same temperature, while the HO yield was lowest in the liquefaction process. At the same retention time in super-critical ethanol, the SR yield of microcrystalline cellulose was highest, suggesting that the microcrystalline cellulose was difficult to liquefy. The effect of different samples on liquefaction in ethanol with various cellulose/ethanol ratios can be clearly seen from the distribution yields. The FT-IR analysis of the solid residues showed that the structure of celluloses changed after liquefaction. The GC-MS analysis showed that the volatile organic compounds, water-soluble oil, and heavy oil comprised a mixture of organic compounds, which mainly included furfural, acids, furans, esters, and their derivatives. XRD analysis revealed that the decomposing reaction primarily occurred within amorphous zones of the celluloses at the low temperatures.
Download PDF