NC State
BioResources
Zhang, D., Wang, G., and Ren, W. (2014). "Effect of different veneer-joint forms and allocations on mechanical properties of bamboo-bundle laminated veneer lumber," BioRes. 9(2), 2689-2695.

Abstract

Bamboo-bundle laminated veneer lumber (BLVL) was produced by veneer lengthening technology. The objective of this study was to evaluate the effect of different veneer-joint forms and allocations on the mechanical properties of BLVL. Four veneer-joint forms, i.e., butt joint, lap joint, toe joint, and tape joint, and three lap-joint allocations, i.e., invariable allocation (Type I), staggered allocation (Type II), and uniform allocation (Type III), were investigated in laminates. The results revealed that the mechanical properties of veneer-joint BLVL were reduced in comparison with that of un-jointed BLVL. It was found that the best veneer-joint form was the lap joint laminate, of which the tensile strength, modulus of elasticity, and modulus of rupture values were reduced by 38.41%, 0.66%, and 10.92%, respectively, when compared to the un-jointed control samples. Type III showed the lowest influence on bending and tensile properties, followed by Type II.
Download PDF