NC State
Németh, R., Tsalagkas, D., and Bak, M. (2015). "Effect of soil contact on the modulus of elasticity of beeswax-impregnated wood," BioRes. 10(1), 1574-1586.


The aims of this study were to use beeswax impregnation as a wood preservative method and to evaluate its suitability to protect wood species with low resistance to decay. Poplar (Populus × euramericana cv. Pannonia) and beech (Fagus sylvatica) samples were impregnated with beeswax and exposed to soil contact for 18 months. Impregnated samples were separated into three groups, on the basis of their degrees of pore saturation (DPS). With progressing decay, the load-bearing capacity and modulus of elasticity (MOE) of the woods decreased. After one month of soil contact, there was a marked decrease in MOE, which is explained by the increase in the moisture content of the wood. After 18 months, control samples were completely decayed. Nevertheless, impregnated samples showed less decay and a noticeable remaining load-bearing capacity. Impregnation efficiency had a pronounced effect on decay resistance. In both investigated species, samples with higher DPS resulted in less of a decrease in MOE than in samples with lower DPS. Although beeswax is a bio-based material, it showed noticeable decay resistance effects against soft rot. Scanning electron microscopy investigations showed that the impregnation has a barrier effect, mostly in the longitudinal direction, against the spread of the fungi.
Download PDF