NC State
BioResources
Dai, L., Dai, H., Yuan, Y., Sun, X., and Zhu, Z. (2011). "Effects of TEMPO oxidation system on kinetic constants of cotton fibers," BioRes. 6(3), 2619-2631.

Abstract

The kinetics of the TEMPO-mediated oxidation of cotton fibers were studied. It was revealed that the oxidation reaction of the cotton fibers by TEMPO/NaBr/NaClO system can be approximately described as two pseudo-first-order reaction kinetics that are based on the cellulose microstructure, namely the kinetic processes of the primary wall and the secondary wall. In the concentration range used in this study, the rate constant k was directly proportional to the concentration of TEMPO. As to NaBr, the rate constant was proportional to the concentration in a relatively lower range, while it tended to level off at higher concentration, but the oxidation reaction rate increased with concentration when the concentration was above 1.0 mmol/g. The pH value had a great impact on the oxidation rate; the optimum pH was controlled from 10 to 11. The effect of temperature on the rate constant could be well described by the Arrhenius equation, and the apparent activation energy measured was about 56.66kJ/mol. The X-ray diffraction pattern, which indicates the crystallinity of cotton fibers, was nearly constant during the oxidation.
Download PDF