NC State
BioResources
Wang, L., and Li, J. (2013). "Electromagnetic-shielding, wood-based material created using a novel electroless copper plating process," BioRes. 8(3), 3414-3425.

Abstract

A copper coating was deposited on Fraxinus mandshurica veneers to create an EMI-shielding, wood-based material via a simple electroless copper plating process. The wood veneers were pretreated in a NaBH4 solution. The wood veneers treated with NaBH4 were immersed in a plating bath in which copper coating was successfully initiated. The coatings were characterized by SEM-EDS, XPS, and XRD. The metal deposition, surface resistivity, and the effectiveness of electromagnetic shielding were measured. The morphology of the coating was uniform, compact, and continuous. The grain of the wood was preserved on the plated wood veneer, which had a copper-like color. But the samples were less glossy compared to those from Pd activation. EDS, XPS, and XRD results indicated that the coating consisted of Cu0 with a crystalline structure. The surface resistivity and copper deposition were 0.399 Ω/cm2 and 31.98 g/m2 when the veneer was pretreated with a 3 g/L NaBH4 solution for 10 min and plated for 25 min at 60 °C. The plated veneers exhibited good electromagnetic shielding effectiveness of over 40 dB in frequencies ranging from 10 MHz to 1.5 GHz.
Download PDF