NC State
S.B. Lindström, T. Uesaka and U. Hirn. Evolution of the paper structure along the length of a twin-wire former. In Advances in Pulp and Paper Research, Oxford 2009, Trans. of the XIVth Fund. Res. Symp. Oxford, 2009, (S.J. I’Anson, ed.), pp 207–245, FRC, Manchester, 2018.


A particle-level numerical model is used to simulate forming with a twin-wire former configuration. The development of the paper structure along the length of the former is observed to explain the effects of the dewatering elements on the paper structure at different jet-to-wire speed ratios, consistencies, and target basis weights. The simulations indicate that most of the structure development takes place in the initial part of forming (forming roll) and, in some instances, at the drop to atmospheric pressure after the forming roll. Dramatic effects on the through-thickness fibre orientation anisotropy are observed when the consistency is varied by changing the jet thickness, while changes in basis weight had less impact. The through-thickness concentration gradient was almost uniform throughout the forming process, except in the lower range of typical papermaking consistencies. This indicates that the dewatering mechanism is normally thickening, rather than filtration.

Download PDF