NC State
A. Hagman, B. Timmermann, M. Nygårds, A. Lundin, C. Barbier, M. Fredlund and S. Östlund. Experimental and numerical verification of 3D forming. In Advances in Pulp and Paper Research, Oxford 2017Trans. of the XVIth Fund. Res. Symp. Oxford, 2017, (W. Batchelor and D. Söderberg, eds), pp 3-26, FRC, Manchester, 2018.


Motivated by sustainability arguments there is a recent interest in forming of advanced structures in paper and paperboard. Therefore, in this paper, hydro-forming of papers and the effect of different fibre raw materials, beating, strength additives (PVAm), grammage and wet and dry papers have been investigated experimentally and numerically.
The experiments were carried out in laboratory hydro-forming device. Softwood sheets performed better than hardwood sheets, since they had higher strain at break. The ability of paper to withstand hydro-forming successfully was primarily dependent of the strain at break of the paper in relation to the straining required to fill the mould. Forming of wet sheets were also investigated; overall the wet sheets formed better than the dry sheets, which was due to higher strain at break and lower elastic energy. Since the forming was displacement controlled, there was no significant difference in the effects of beating, amount of PVAm or grammage.
Finite element modelling was performed to identify local strains and predict problematic regions. Simulations were also performed to determine how anisotropic sheets would behave, as well as to compare the process of hydro-forming with press-forming. The papers could be strained to higher strain levels than the measured strain at break because the paper is supported by the membrane and mould during the forming operation. The maximum strain a paper can withstand can be increased if the paper can slide into the mould, i.e. by having a lower coefficient of friction between the steel mould and the paperboard.
During hydro-forming the paper is supported by a rubber membrane, which gives lower strain levels than the corresponding press-forming operation due to the difference in how the paper is deformed. Press-forming therefore required paper with higher strain at break. Higher friction results in more paper being pulled into the mould, which contributes to wrinkling of the paper. Simulation of tray forming of a creased sample was performed, which showed that high friction or compliant creases decreased the circumferential compression.

Download PDF