NC State
Li, H., Feng, Y., Tang, L., and Yang, F. (2021). "From flax fibers to activated carbon electrodes: The role of fiber refining," BioResources 16(1), 1296-1310.


Flax-based activated porous carbon materials (APCs) were prepared via KOH and urea synergistic activation in the carbonization process using flax pulp as a biocompatible and eco-friendly biomass precursor. A refining process was used to pretreat the flax pulp fibers, which has been known to improve and optimize the performance of APCs. The morphological and physicochemical structures of APCs were investigated, and the results showed that APCs exhibited high specific surface area and porous microstructure. Furthermore, APCs were rationally designed as a sustainable electrode material. The APC prepared by 60 °SR (Shopper-Riegler beating degree) flax pulp, named APC-60, exhibited the highest specific capacitance of 265.8 F/g at a current density of 0.5 A/g. The specific capacitance retention at 59% remained for the APC-60 electrodes at a high current density of 10 A/g. These results suggested that the flax-based APCs could be a promising carbon-based electrode material for sustainable electrochemical energy storage.

Download PDF