NC State
BioResources
Li, H., Zhang, F., Ramaswamy, H. S., Zhu, S., and Yu, Y. (2016). "High-pressure treatment of Chinese fir wood: Effect on density, mechanical properties, humidity-related moisture migration, and dimensional stability," BioRes. 11(4), 10497-10510.

Abstract

A new densification technique for industrial uses of plantation wood was studied. Chinese fir wood was treated by high pressure (HP) at 50 to 200 MPa for 5 min. The density and mechanical properties, moisture sorption isotherm (MSI), and dimensional changes of the pressure-treated wood under various relative humidity (RH) storage conditions were evaluated. The densities of HP-treated wood ranged from 0.79 ± 0.01 g/cm3 after treatment at 50 MPa to 0.92 ± 0.02 g/cm3 at 200 MPa, which was significantly higher (p < 0.05) than that of the control (0.35 ± 0.01 g/cm3). Hardness values in radial and tangential fiber alignment faces also significantly increased by 370% to 470% and 350% to 460%, respectively, as compared with the control. The modulus of elasticity and the modulus of rupture of pressure-treated wood increased by 48% to 88% and 89% to 170%, respectively. The equilibrium moisture content varied with RH, decreasing slightly at 33% and 52% while significantly increasing (p < 0.001) at 86% and 93% RH. Radial, tangential, and volumetric dimensions of densified wood were relatively stable at 33%, 52%, and 67% RH, while remarkable swelling occurred at 86% and 93% RH.

Download PDF