NC State
BioResources
Pelletier, A., Zhao, Y., Lei, X., and Li, K. (2013). "Improved fiber separation and energy reduction in thermomechanical pulp refining using enzyme-pretreated wood," BioRes. 8(3), 3385-3398.

Abstract

Black spruce (Picea mariana) wood chips were subjected to enzymatic pretreatments, using an enzyme formulation containing cellulolytic and hemicellulolytic enzymes, combined with light mechanical treatments including downsizing and/or compression/decompression. These pretreatments were followed by 3 stages of mechanical refining in a lab-scale disc refiner. Depending on the treatment, the overall energy savings obtained could be as high as 15%. Most of the savings were obtained during the first stage of refining. Pulps collected after this stage were imaged using TEM and SEM. Differences were observed between differing treatment types. The most significant differences were seen when macerated chips were compressed and allowed to decompress in enzyme solutions. Enzyme treatments are able to change the rupture pattern during refining, thus lowering the overall specific energy consumption (SEC) as evidenced by improved pulp freeness and direct energy measurements. Increasing enzyme penetration helps to improve the overall SEC savings and also improves the distribution of energy savings throughout the refining stages by moving initial fiber separation from the middle lamella into the secondary wall.
Download PDF