NC State
BioResources
Žlahtič, M., and Humar, M. (2016). "Influence of artificial and natural weathering on the hydrophobicity and surface properties of wood," BioRes. 11(2), 4964-4989.

Abstract

The use of wood in outdoor, above-ground applications is increasing in Europe. To further increase wood usage, more information related to service life and maintenance costs must be provided. Water exclusion efficacy (WEE) is one of the most important factors influencing service life and strongly correlates to wood moisture dynamics, surface properties, and hydrophobicity (WEE as a whole). WEE can be improved with modifications and hydrophobic treatments. The aim of this study was to elucidate which wood surface properties affect WEE and to note changes over time caused by artificial or natural aging. Wood samples of oak (Quercus), sweet chestnut (Castanea sativa), European larch (Larix decidua), Scots pine heartwood and sapwood (Pinus sylvestris), Norway spruce (Picea abies), and beech (Fagus sylvatica) were used to investigate this phenomenon. The moisture performance of the wood samples was improved with thermal modification, wax, oil, and biocide treatment. In total, 17 materials were prepared. After treatment, four different aging procedures were applied. Before and after aging, Fourier transform infrared spectra, colour, and contact angle were determined. The analysis of untreated wood based materials indicated that durability and hydrophobicity are related. Of all the treatments, wax performed the best and retained high hydrophobicity even after the most severe aging method (outdoor exposure).
Download PDF