NC State
BioResources
A. DeMaio and T. Patterson. Influence of fiber-fiber bonding on the tensile creep compliance of paper. In Advances in Paper Science and Technology, Trans. of the XIIIth Fund. Res. Symp. Cambridge, 2005, (S.J. I’Anson, ed.), pp 749–775, FRC, Manchester, 2018.

Abstract

In this study, two sets of sheets were made with differing levels of specific bond strength and relative bonded area. One set of sheets were wet pressed using a high press load and the other set of sheets were wet pressed using a low press load. Within each set, the sheets were treated with either a debonder or a bonder or received no treatment. Creep compliance data showed that creep curves for the debonder, bonder and untreated sheets were the same for the sheets wet pressed at the high press load and different for the sheets wet pressed at the low press load. Creep failure time was influenced by the treatments in both the high and low load wet pressed sheets; sheets treated with debonder failed first and the sheets treated with bonder failed last. It was concluded that at high levels of bonding as is the case with the high load wet pressed sheets, differences in specific bond strength due to the treatments do not influence creep deformation because fiber-fiber bonding is at a level where the sheets are efficiently loaded structures. The low load wet pressed sheets showed differences in creep deformation when specific bond strength was changed with treatments because fiber-fiber bonding was at a lower level where the sheets were inefficiently loaded. As the loading efficiency of the paper structure is improved through increased fiber-fiber bonding (either by increasing specific bond strength or relative bonded area), an efficiently loaded structure can be achieved where fiber-
fiber bonding no longer affects deformation. This allows creep compliance to reach a minimum level which is dictated solely by the fibers. An efficiency factor can be used to describe deformation behavior where an efficiency of “1” indicates an efficiently loaded structure and lower values indicate a less than fully efficient structure, one in which fiber-fiber bonding influences deformation behavior. In this study, efficiency factors were used to scale the low load wet pressed sheet results and several sets of lesser refined and pressed sheets (thereby “removing” fiber-fiber bonding influence) and the data superimposed onto the high load wet pressed sheet results.


Download PDF