NC State
Dzurenda, L., and Pňakovič, L. (2016). "Influence of the burning temperature of the non-volatile combustible content of wood and bark of plantation-grown, fast-growing tree species upon ash production, and its properties in terms of fusibility," BioRes. 11(3), 6464-6476.


The influence of the burning temperature was evaluated for the non-volatile combustible content of wood and bark of plantation-grown trees, at temperature intervals ranging from 500 °C to 1000 °C relative to ash production and the concentration of Ca, Mg, K, Mn, Zn, and Fe in ash, thermal properties, and ash fusibility. Production of ash from combustion of juvenile wood at t = 500 °C was Ad = 0.74% and juvenile bark Ad = 6.88%. Ash production decreased with increasing burning temperature. This was attributed to the chemical diversity of minerals contained in the wood and bark and their slow decomposition. Analyses of the presence of inorganic substances in ash from wood and bark revealed the highest presence of Ca. The concentration of calcium in ash from wood was Ca = 189 ± 46 and in bark Ca = 278 ± The ratio of processed calcium, potassium, magnesium, zinc, manganese, and iron in ash from wood at a burning temperature of t = 500 °C was Ca:K:Mg:Zn:Mn:Fe = 1:0.58:0.13:0.04:0.03:0.02 and from bark Ca:K:Mg:Zn:Mn:Fe = 1:0.41:0.07:0.01:0.01:0.003, respectively. The influence of the burning temperature non-volatile combustible was reflected in the concentration of each elements in ash and was contradictory. While concentration of Ca, Mg, Mn, and Fe in ash from wood and bark increased, concentration K and Zn in ash decreased. The decrease in concentration K, had a positive influence upon the thermal characteristics of the ash and the creation of ash in the form of loose matter.

Download PDF