NC State
BioResources
Kupiainen, L., Ahola, J., and Tanskanen, J. (2014). "Kinetics of formic acid-catalyzed cellulose hydrolysis," BioRes. 9(2), 2645-2658.

Abstract

Hydrolysis is a reaction to produce sugars from lignocellulosic raw materials for biochemical production. The present study elucidates the hydrolysis of cellulose and formation of glucose decomposition products catalyzed by 5% to 20% (w/w) formic acid at 180 to 220 °C with an initial cellulose concentration of 10 to 100 g/L. Microcrystalline cellulose was used as a model compound. The experimental findings indicated that cellulose hydrolysis follows first-order kinetics in formic acid. A side reaction from cellulose to non-glucose products was required to explain the experimental results. A kinetic model was developed for the hydrolysis of microcrystalline cellulose in formic acid, based on a rate constant expression in accordance with the specific acid catalysis. The model showed good agreement with the experimental data. This study demonstrates how kinetic parameters can be fitted in a case-specific manner for the hydrolysis part of the kinetic model, while the well-established glucose decomposition model is utilized directly from literature.
Download PDF