NC State
BioResources
Li, S.-M., Sun, S.-L., Ma, M.-G., Dong, Y.-Y., Fu, L.-H., Sun, R.-C., and Xu, F. (2013). "Lignin-based carbon/CePO4 nanocomposites: Solvothermal fabrication, characterization, thermal stability, and luminescence," BioRes. 8(3), 4155-4170.

Abstract

This work explored the synthesis of carbon-based luminescent materials using cheap, natural resources. Lignin-based carbon/CePO4 nanocomposites were successfully synthesized using previously extracted lignin solution and CePO4, or NaH2PO4•2H2O and Ce(NO3)3•6H2O by the solvothermal method at 200 °C for 24 h, respectively. The lignin solution was previously prepared by the extraction of wood powder in a mixed solvent of dimethyl sulfoxide (DMSO)/lithium chloride (LiCl). All of the obtained lignin-based carbon/CePO4 nanocomposites were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectra (EDS), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and photoluminescence (PL). SEM micrographs showed that the CePO4 concentration had an influence on the size, microstructure, and morphology of the carbon/ CePO4 nanocomposites. The experimental results indicated that the obtained lignin-based carbon/CePO4 nanocomposites had excellent PL properties.
Download PDF