NC State
Kord, B. (2011). "Nanofiller reinforcement effects on the thermal, dynamic mechanical, and morphological behavior of HDPE/rice husk flour composites," BioRes. 6(2), 1351-1358.


Polymer nanocomposites reinforced with lower volume fractions of nanofiller have recently attracted steadily growing interest due to their peculiar and fascinating properties as well as their unique applications in commercial sectors. In this study, composites based on high density polyethylene and rice husk flour with different loading of nanoclay were fabricated in an internal mixer. The influence of nanofiller at four levels (0, 2, 4, and 6 per hundred compounds (phc)) on the thermal and rheological behavior was studied. The morphology of nanoclay was determined by X-ray diffraction (XRD), and the effect of morphology on the thermal and dynamic mechanical properties were considered. Results indicated that the crystallization temperature, crystallization enthalpy, and crystallinity level increased with increase of nanoclay up to 2 phc and then decreased. Also, the dynamic mechanical behavior of composites was improved by the addition of nanofiller. X-ray diffraction patterns (XRD) revealed that the nanocomposites formed were intercalated. Morphological findings showed that samples containing 2 phc of nanoclay had higher order of intercalation and better dispersion. It seems that the thermal and dynamic mechanical properties of the HDPE/rice husk flour composites were improved by increasing addition of coupling agent.
Download PDF