Abstract
The plant cell wall exhibits a hierarchical structure, in which the organization of the constituents on different levels strongly affects the mechanical properties and the performance of the material. In this work, the interactions between cellulose and xylan in a model system consisting of a bacterial cellulose/glucuronoxylan (extracted from aspen, Populus tremula) have been studied and compared to that of a delignified aspen fiber material. The properties of the materials were analyzed using Dynamical Mechanical Analysis (DMA) with moisture scans together with dynamic Infra Red -spectroscopy at dry and humid conditions. The results showed that strong interactions existed between the cellulose and the xylan in the aspen holocellulose. The same kinds of interactions were seen in a water-extracted bacterial cellulose/xylan composite, while unextracted material showed the presence of xylan not interacting with the cellulose. Based on these findings for the model system, it was suggested that there is in hardwood one fraction of xylan that is strongly associated with the cellulose, taking a similar role as glucomannan in softwood.Download PDF