NC State
BioResources
Lu, W., Hu, Y., Yao, J., and Li, Y. (2013). "Optimization and simulation research of tensile properties of wood lap joint," BioRes. 8(1), 1409-1419.

Abstract

The performance of veneer joints is known to affect the quality of laminated veneer lumber (LVL), so experimental research and simulation analysis of the tensile properties of lap joints were performed and reported in this paper. The lap length, specimen thickness, and specimen width were selected as the experimental factors. The maximum tensile load increased with the increase of each factor; the tensile strength increased with the increase of lap length, whereas it decreased with the increase of specimen thickness. Specimen width had significant effect on the maximum tensile load, but had little influence on the tensile strength. A response surface model of tensile strength was obtained using Matlab software, and it was used to predict the tensile properties for lap joints. The results of ANSYS simulation analysis showed that the stress peaks were concentrated in the joint ends; the peak shear stress and peak stripping stress all decreased with the increase of lap length and increased with the increase of specimen thickness; the result was consistent with the experimental results; therefore, the finite element simulation results can be used for the optimized selection of size parameters of joints.
Download PDF