NC State
BioResources
P.A. Larsson, J. Kochumalayil and L. Wågberg. Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-crosslinking fibrillated cellulose. In Advances in Pulp and Paper Research, Cambridge 2013, Trans. of the XVth Fund. Res. Symp. Cambridge, 2013, (S.J. I’Anson, ed.), pp 851–866, FRC, Manchester, 2018.

Abstract

To replace petroleum-based barriers used in, for example, packaging applications with a bio-based alternative, the sensitivity to moisture must be lowered. The present work describes the fabrication and characterisation of cellulose-based films with remarkably improved oxygen and water-vapour-barrier properties at 80% relative humidity. This was achieved by fabricating films of self- cross- linking fibrillated cellulose after partial periodate oxidation to dialdehyde cellulose. At a relative humidity of 80%, films made of 27% and 44% oxidised cellulose, respectively, showed less than half the water vapour permeability of the untreated reference; 3.8 g·mm/(m2·24 h·kPa) and 3.7 g·mm/(m2·24 h·kPa) compared to 8.0 g·mm/(m2·24 h·kPa). This was presumably due to a lower moisture uptake in the films, and consequently less swelling. In the absence of moisture, films from both unmodified and modified fibrillated cellulose were ideal oxygen barriers, but at a relative humidity of 80%, films based on 27% and 44% converted cellulose had an oxygen permeability of 2.2 ml·Rm/ (m2·24 h·kPa) and 1.8 ml·Rm/(m2·24 h·kPa), respectively, compared to 9.2 ml·Rm/(m2·24 h·kPa) for the non- oxidised material. The cross-linking resulted in an embrittlement of the films, but the 27% oxidised material still had a tensile strength of 148 MPa and a tensile strain at break of 2.0%, which is sufficient in, for example, many packaging applications.


Download PDF