Abstract
Surface treatment is an important step of papermaking, namely for improving the final product quality. For uncoated printing and writing papers (P&W), surface sizing is becoming a common practice for controlling paper surface characteristics and liquid spreading and absorption. This work aims at evaluating the potential of assessing and controlling paper surface chemistry, by analyzing the impact of the application of different surface sizing formulations both on the chemical surface characteristics of the modified paper samples and on the final printing quality. For that, blends of cationic starch and minor quantities (5%, 10%, and 20% w/w) of four distinct copolymers of styrene were used, resulting in a total of 12 different surface sizing formulations. A sample surface sized only with cationic starch was taken as reference. Surface chemical properties were determined by using contact angle measurements and inverse gas chromatography. Finally, the inkjet printing quality was evaluated. The results revealed that the surface sizing treatments tested have a substantial influence on the surface energetics and partially explain the differences detected in the inkjet printing quality.Download PDF