NC State
Khwaldia, K. (2013). "Physical and mechanical properties of hydroxypropyl methylcellulose-coated paper as affected by coating weight and coating composition," BioRes. 8(3), 3438-3452.


Hydroxypropyl methylcellulose (HPMC)coated papers without plasticizer and plasticized with polyols were prepared, and the effects of coating weight, different plasticizers (glycerol (GLY), sorbitol (SOR), and polyethylene glycol (PEG)), and plasticizer contents (20% to 50%) on the physical and mechanical properties of the resulting biopolymer-coated papers were studied. Coating weight was the most important factor affecting mechanical properties. Conversely, increasing coating weight led to a decrease in gloss and to an increase in tensile strength (TS), elongation at break (%E), and tearing resistance of coated papers. The application of unplasticized HPMC coatings (3 g/m2) on paper reduced water vapor permeability (WVP) and water absorption capacity by 25% as compared with uncoated paper. All plasticizers significantly (p < 0.05) increased WVP and Cobb60 values of the films. With the exception of PEG, no effect was found with plasticizers on TS and %E of coated papers compared with those without plasticizer. HPMC-coated papers with PEG as a plasticizer showed significantly lower TS and higher %E and tearing resistance than the other plasticized films (p < 0.05). HPMC coating improved tensile properties and tearing resistance of paper and could be regarded as a reinforcement layer.
Download PDF