NC State
BioResources
Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., Nortier, P., and Belgacem, N. (2010). "Polypyrrole synthesis via carboxymethylcellulose-iron complexes," BioRes. 5(4), 2348-2361.

Abstract

Polypyrrole (PPy) was chemically synthesised at two pH levels (pH = 2 and unadjusted pH, i.e. 6.6) using pre-formed carboxymethylcellulose-iron (CMC-Fe) complexes. The CMC-Fe complexes were prepared at a fixed CMC concentration, i.e. 5.5x10-5 mol/L, and with an increasing FeCl3 amount (from 4x10-3 to 5x10-2 mol/L). The quantity of iron bound to CMC was determined by the inductively coupled plasma (ICP-MS) method. In order to understand the interactions between CMC and iron, speciation of the systems was simulated by Phreeqc software. SEM analysis showed that, in some conditions (particularly at pH = 2), Py polymerised within the CMC-Fe complexes, forming particles with size ranging between 300 and 600 nm. In order to evaluate polymer electric conductivity, films were prepared by direct casting of the PPy-CMC-Fe dispersions with and without addition of film-forming CMC, and bulky PPy-CMC-Fe pellets were obtained by compression. Despite the different arrangement PPy-CMC-Fe particles in dry films, the amount of iron bound to CMC during the formation of CMC-Fe complexes was found to be the dominant parameter affecting polymer conductivity.
Download PDF