NC State
BioResources
Feng, H., Li, J., and Wang, L. (2010). "Preparation of biodegradable flax shive cellulose-based superabsorbent polymer under microwave irradiation," BioRes. 5(3), 1484-1495.

Abstract

Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS) as an initiator and N,N’-methylenebisacrylamide (MBA) as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA). The biodegradability in soil was measured at 32 and 40 oC. The polymer was porous, and thermal stability of the polymer was observed up to approximately 200 oC. FT-IR analysis indicated that acrylic acid in polymer was successfully grafted onto the cellulose. The graft copolymer was found to be an effective superabsorbent resin, rapidly absorbing water to almost 1000 times its own dry weight at pH around 7.3. The water absorbency in 0.9% NaCl, KCl, FeCl3 solutions and urine were 56.47 g/g, 54.71g/g, 9.89g/g and 797.21g/g, respectively. The product biologically degraded up to 40% at 40 oC in 54 days, which shows good biodegradability.
Download PDF