NC State
BioResources
Wang, B., Li, R., Zeng, J., He, M., and Li, J. (2021). "Preparation of cellulose nanocrystals via successive periodate and bisulfite oxidation and mechanical and hydrophilic properties of the films," BioResources 16(1), 1713-1725.

Abstract

Microcrystalline cellulose was oxidized via periodate followed by sulfonation. The sulfonated cellulose nanocrystals were obtained through centrifugation, dialysis, and sonication. The sulfonated cellulose nanocrystals were rod-like and had an average length of 140 nm to 153 nm and an average width of 8 to 10 nm. The Fourier transform infrared profiles and polyelectrate titration demonstrated successful introduction of the sulfonated groups into the cellulose nanocrystals. The sulfonated cellulose nanocrystals had a higher crystallinity index than dialdehyde cellulose. The thin films fabricated via the casting of the sulfonated cellulose nanocrystals suspensions were highly hydrophilic.


Download PDF