NC State
Ma, S., Zhang, M., Yang, B., Song, S., Nie, J., and Lu, P. (2018). "Preparation of cellulosic air filters with controllable pore structures via organic solvent-based freeze casting: The key role of fiber dispersion and pore size," BioRes. 13(3), 5894-5908.


Green and biodegradable cellulose filters with controlled designer pore structures were prepared using organic solvent-based freeze casting. In this paper, the relationship between the different freeze media, including ethanol, isopropanol, and tertiary-butyl alcohol, and the microstructure of the porous filters was investigated. The results of the pore size distribution indicated that the pore channel size decreased remarkably when organic solvents were used as the freezing media. Moreover, the filters showed high filtration efficiencies, up to 99.70% and 99.66% for 0.5 µm and 0.3 µm particles, respectively, under a pressure drop of 180 Pa and at 32 L·min-1 flow rate. The fabrication of cellulosic filters would not only make it a promising candidate for capturing fine particulate matter, but also provide a versatile approach to regulate and design a porous structure for materials applied in various fields.

Download PDF