NC State
BioResources
Huang, L. J., Yang, Y., Cai, Y. Y., Liu, M., Xu, T., Nong, G. Z., and Wang, S. F. (2014). "Preparation of superabsorbent resin from carboxymethyl cellulose grafted with acrylic acid by low-temperature plasma treatment," BioRes. 9(2), 2987-2999.

Abstract

A superabsorbent resin (SAR) synthesized from carboxymethyl cellulose (CMC) by grafting acrylic acid (AA) was studied using single-factor analysis. The optimum preparation conditions were as follows: plasma discharge power of 250 W, processing time of 90 s, pressure of 300 Pa, m(CMC):m(AA) ratio of 1:9, m(K2S2O8):m(CMC) ratio of 1:4, and neutralization degree of 40%. Under these conditions, the resin has a salt water absorbency of 38.5 g/g and a stable chlorine dioxide solution absorbency of 27.2 g/g. The structural characterization of the SAR was also studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning colorimetry (DSC). The results showed that the resin was synthesized by grafting copolymerization of CMC and AA, and the water absorbency and thermal stability of the resin were greatly improvedcompared to CMC alone. This method may provide a new way for high value-added utilization of bagasse.
Download PDF