NC State
BioResources
Hashim, R., Wan Nadhari, W. N. A., Sulaiman, O., Sato, M., Hiziroglu, S., Kawamura, F., Sugimoto, T., Seng, T. G., and Tanaka, R. (2012). "Properties of binderless particleboard panels manufactured from oil palm biomass," BioRes. 7(1), 1352-1365.

Abstract

The objective of the study was to investigate physical and mechanical properties of experimental particleboard panels manufactured from oil palm (Elaeis guineensis) biomass without using any adhesives. Different parts of oil palm, including the core and mid sections of trunks, fronds, bark, and leaves, were used to make the panels with an average target density of 0.80g/cm3. Based on the test results, it seems that panels made from bark and leaves did not have satisfactory strength and dimensional stability. However, the panels having particles from the core portion of the trunks exhibited the highest modulus of rupture and internal bond strength but lowest in thickness swelling and water absorption values among the samples. The panels made with particles of mid-section of trunks and fronds followed the samples having core portion trunks material. Three types of raw material, namely fronds, mid-, and core-parts of the trunks appeared as though they could have potential to manufacture particleboard panels with acceptable properties based on requirements stated in Japanese Industrial Standard (JIS). Similar to the above findings, surface quality of the samples were also found acceptable for the panels made from three types of particles. Based on the results of this work, oil palm in the form of biomass could be considered as an environmentally friendly alternative raw material to manufacture binderless particleboard panels.
Download PDF