NC State
J. Liu and R. Pelton. Reactive polyvinylamine-graft-TEMPO/laccase complex giving wet cellulose adhesion. In Advances in Pulp and Paper Research, Cambridge 2013, Trans. of the XVth Fund. Res. Symp. Cambridge, 2013, (S.J. I’Anson, ed.), pp 869–885, FRC, Manchester, 2018.


Cellulose surfaces are activated for wet adhesion, bioconjugation and other applications by the introduction of a “primer” layer consisting of a covalently bonded polyelectrolyte complex based on laccase and polyvinylamine with pendent TEMPO groups, PVAm-T . The laccase, in conjunction with dissolved oxygen, activates the TEMPO moieties on PVAm-T, facilitating the oxidation of primary hydroxyl groups on the cellulose surface. The resulting cellulosic aldehydes are free to couple covalently with amine groups on the PVAm-T . The generally accepted mechanism of TEMPO oxidation is that the primary oxidant converts TEMPO into a reactive oxoammonium ion that shuttles an electron to primary alcohols. Since the translational mobility of TEMPO will be limited when grafted to a polymer and present as a polyelectrolyte complex with laccase, it is proposed that the activated oxoammonium ions jump along the PVAm-T chain, from TEMPO to neighbouring TEMPO. Wet adhesion of laminated regenerated cellulose sheets was used as the primary assay indicating the presence of covalent bonding.

Download PDF